Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T15:35:04.717Z Has data issue: false hasContentIssue false

A scaling law for the lift of a bio-inspired wing hovering in low-density compressible flows

Published online by Cambridge University Press:  13 January 2025

Nathan Widdup
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia Air and Space Power Centre, Royal Australian Air Force, Canberra, ACT 2609, Australia
Li Wang
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
John Young
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
Vincent Daria
Affiliation:
Air and Space Power Centre, Royal Australian Air Force, Canberra, ACT 2609, Australia
Hao Liu
Affiliation:
Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan
Fang-Bao Tian*
Affiliation:
School of Engineering and Technology, University of New South Wales, Canberra, ACT 2600, Australia
*
Email address for correspondence: [email protected]

Abstract

Aircraft with bio-inspired flapping wings that are operated in low-density atmospheric environments encounter unique challenges associated with the low density. The low density results in the requirement of high operating velocities of aircraft to generate sufficient lift resulting in significant compressibility effects. Here, we perform numerical simulations to investigate the compressibility effects on the lift generation of a bio-inspired wing during hovering flight using an immersed boundary method. The aim of this study is to develop a scaling law to understand how the lift is influenced by the Reynolds and Mach numbers, and the associated flow physics. Our simulations have identified a critical Mach number of approximately $0.6$ defined by the average wing-tip velocity. When the Mach number is lower than 0.6, compressibility does not have significant effects on the lift or flow fields, while when the Mach number is greater than $0.6$, the lift coefficient decreases linearly with increasing Mach number, due to the drastic change in the pressure on the wing surface caused by unsteady shock waves. Moreover, the decay rate is dependent on the Reynolds number and the angle of attack. Based on these observations, we propose a scaling law for the lift of a hovering flapping wing by considering compressible and viscous effects, with the scaled lift showing excellent collapse.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achenbach, E. 1972 Experiments on the flow past spheres at very high Reynolds numbers. J. Fluid Mech. 54 (3), 565575.CrossRefGoogle Scholar
Addo-Akoto, R., Han, J.-S. & Han, J.-H. 2022 Aerodynamic characteristics of flexible flapping wings depending on aspect ratio and slack angle. Phys. Fluids 34, 051911.CrossRefGoogle Scholar
Almeida, M.P., Parteli, E.J.R., Andrade, J.S. Jr & Herrmann, H.J. 2008 Giant saltation on Mars. Proc. Natl Acad. Sci. USA 105 (17), 62226226.CrossRefGoogle ScholarPubMed
Anderson, J.D. 2011 Fundamentals of Aerodynamics, 5th edn. McGraw-Hill.Google Scholar
Ansari, S.A., Knowles, K. & Zbikowski, R. 2008 Insectlike flapping wings in the hover part I: effect of wing kinematics. J. Aircraft 45 (6), 19451954.CrossRefGoogle Scholar
Ayancik, F., Zhong, Q., Quinn, D.B., Brandes, A., Bart-Smith, H. & Moored, K.W. 2019 Scaling laws for the propulsive performance of three-dimensional pitching propulsors. J. Fluid Mech. 871, 11171138.CrossRefGoogle Scholar
Barlow, N. 2008 Mars: An Introduction to its Interior, Surface and Atmosphere. Cambridge University Press.CrossRefGoogle Scholar
Birch, J.M., Dickson, W.B. & Dickinson, M.H. 2004 Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. J. Expl Biol. 207 (7), 10631072.CrossRefGoogle ScholarPubMed
Bluman, J.E., Pohly, J.A., Sridhar, M.K., Kang, C.-K., Landrum, D.B., Fahimi, F. & Aono, H. 2018 Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling. Bioinspir. Biomim. 13 (4), 046010.CrossRefGoogle ScholarPubMed
Bomphrey, R.J., Nakata, T., Phillips, N. & Walker, S.M. 2017 Smart wing rotation and trailing-edge vortices enable high frequency mosquito flight. Nature 544, 9295.CrossRefGoogle ScholarPubMed
Carr, Z.R., Chen, C. & Ringuette, M.J. 2013 Finite-span rotating wings: three-dimensional vortex formation and variations with aspect ratio. Exp. Fluids 54 (2), 1444.CrossRefGoogle Scholar
Carruthers, A.C., Thomas, A.L., Walker, S.M. & Taylor, G.K. 2010 Mechanics and aerodynamics of perching manoeuvres in a large bird of prey. Aeronaut. J. 114, 673680.CrossRefGoogle Scholar
Chen, L., Wang, L., Zhou, C., Wu, J. & Cheng, B. 2022 Effects of Reynolds number on leading-edge vortex formation dynamics and stability in revolving wings. J. Fluid Mech. 931, A13.CrossRefGoogle Scholar
Chin, D.D. & Lentink, D. 2016 Flapping wing aerodynamics: from insects to vertebrates. J. Expl Biol. 219 (7), 920932.CrossRefGoogle ScholarPubMed
Chin, D.D. & Lentink, D. 2019 Birds repurpose the role of drag and lift to take off and land. Nat. Commun. 10, 5354.CrossRefGoogle ScholarPubMed
Constantinescu, G. & Squires, K. 2004 Numerical investigations of flow over a sphere in the subcritical and supercritical regimes. Phys. Fluids 16 (5), 14491466.CrossRefGoogle Scholar
Cook, M.V. 2013 Aerodynamic modelling. In Flight Dynamics Principles, 3rd edn (ed. M.V. Cook), pp. 353–369. Butterworth-Heinemann.CrossRefGoogle Scholar
Dai, H., Luo, H. & Doyle, J.F. 2012 Dynamic pitching of an elastic rectangular wing in hovering motion. J. Fluid Mech. 693, 473499.CrossRefGoogle Scholar
Daniluk, A.Y., Klyushnikov, V.Y., Kuznetsov, I.I. & Osadchenko, A.S. 2015 The past, present, and future of super-heavy launch vehicles for research and exploration of the Moon and Mars. Solar Syst. Res. 49, 490499.CrossRefGoogle Scholar
Dewey, P.A., Boschitsch, B.M., Moored, K.W., Stone, H.A. & Smits, A.J. 2013 Scaling laws for the thrust production of flexible pitching panels. J. Fluid Mech. 732, 2946.CrossRefGoogle Scholar
Dickinson, M.H., Lehmann, F.-O. & Sane, S.P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284 (5422), 19541960.CrossRefGoogle ScholarPubMed
Duan, C. & Wissa, A. 2021 Covert-inspired flaps for lift enhancement and stall mitigation. Bioinspir. Biomim. 16 (4), 046020.CrossRefGoogle ScholarPubMed
Dudley, R. & Ellington, C.P. 1990 Mechanics of forward flight in bumblebees: I. Kinematics and morphology. J. Expl Biol. 148 (1), 1952.CrossRefGoogle Scholar
Eldredge, J.D. & Jones, A.R. 2019 Leading-edge vortices: mechanics and modeling. Annu. Rev. Fluid Mech. 51, 75104.CrossRefGoogle Scholar
Ellington, C.P. 1984 The aerodynamics of hovering insect flight. III. Kinematics. Phil. Trans. R. Soc. Lond. B 305 (1122), 4178.Google Scholar
Ellington, C.P., van den Berg, C., Willmott, A.P. & Thomas, A.L.R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.CrossRefGoogle Scholar
Floryan, D., Van Buren, T., Rowley, C.W. & Smits, A.J. 2017 Scaling the propulsive performance of heaving and pitching foils. J. Fluid Mech. 822, 386397.CrossRefGoogle Scholar
Fu, L., Hu, X.Y. & Adams, N.A. 2016 A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333359.CrossRefGoogle Scholar
Garnier, E., Adams, N. & Sagaut, P. 2009 Large Eddy Simulation for Compressible Flows. Springer Science and Business Media.CrossRefGoogle Scholar
Harbig, R.R., Sheridan, J. & Thompson, M.C. 2013 Reynolds number and aspect ratio effects on the leading-edge vortex for rotating insect wing planforms. J. Fluid Mech. 717, 166192.CrossRefGoogle Scholar
Hawkes, E.W. & Lentink, D. 2016 Fruit fly scale robots can hover longer with flapping wings than with spinning wings. J. R. Soc. Interface 13 (123), 20160730.CrossRefGoogle ScholarPubMed
Huang, Q., Bhat, S.S., Yeo, E.C., Young, J., Lai, J.C.S., Tian, F.-B. & Ravi, S. 2023 Power synchronisations determine the hovering flight efficiency of passively pitching flapping wings. J. Fluid Mech. 974, A41.CrossRefGoogle Scholar
Huang, W.-X. & Tian, F.-B. 2019 Recent trends and progress in the immersed boundary method. Proc. Inst. Mech. Engrs C 233 (23–24), 76177636.Google Scholar
Igritsky, V. & Mayorova, V. 2021 Promising transport infrastructure for the development of the planet Mars at the construction stage and the start of operation of a permanent base. AIP Conf. Proc. 2318 (1), 120020.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jin, B.R., Wang, L., Ravi, S., Young, J., Lai, J.C.S. & Tian, F.-B. 2024 Enhancing tip vortices to improve the lift production through shear layers in flapping-wing flow control. J. Fluid Mech. 999, A25.CrossRefGoogle Scholar
Kang, C.K., Aono, H., Cesnik, C.E.S. & Shyy, W. 2011 Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 689, 3274.CrossRefGoogle Scholar
Kang, C.-K. & Shyy, W. 2013 Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. J. R. Soc. Interface 10, 20130361.CrossRefGoogle ScholarPubMed
Kim, H.J. & Durbin, P.A. 1988 Observations of the frequencies in a sphere wake and of drag increase by acoustic excitation. Phys. Fluids 31 (11), 32603265.CrossRefGoogle Scholar
Kruyt, J.W., van Heijst, G.F., Altshuler, D.L. & Lentink, D. 2015 Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. J. R. Soc. Interface 12 (105), 20150051.CrossRefGoogle ScholarPubMed
Lee, J., Choi, H. & Kim, H.-Y. 2015 A scaling law for the lift of hovering insects. J. Fluid Mech. 782, 479490.CrossRefGoogle Scholar
Lee, J.-S., Kim, C. & Kim, K.H. 2006 Design of flapping airfoil for optimal aerodynamic performance in low-Reynolds number flows. AIAA J. 44 (9), 19601972.CrossRefGoogle Scholar
Lentink, D. & Dickinson, M.H. 2009 Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Expl Biol. 212 (16), 27052719.CrossRefGoogle ScholarPubMed
Liu, H., Aono, H. & Tanaka, H. 2013 Bioinspired air vehicles for Mars exploration. Acta Futura 6, 8195.Google Scholar
Liu, H., Ellington, C.P., Kawachi, K., Van Den Berg, C. & Willmott, A.P. 1998 A computational fluid dynamic study of hawkmoth hovering. J. Expl Biol. 201 (4), 461477.CrossRefGoogle ScholarPubMed
Liu, H., Wang, S. & Liu, T. 2024 Vortices and forces in biological flight: insects, birds, and bats. Annu. Rev. Fluid Mech. 56, 147170.CrossRefGoogle Scholar
Liu, X.-D., Osher, S. & Chan, T. 1994 Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115 (1), 200212.CrossRefGoogle Scholar
Lua, K.-B., Lee, Y.J., Lim, T.T. & Yeo, K.S. 2017 Wing–wake interaction of three-dimensional flapping wings. AIAA J. 55 (3), 729739.CrossRefGoogle Scholar
McCain, J., Pohly, J.A., Sridhar, M., Kang, C.-K., Landrum, D.B. & Aono, H. 2020 Experimental force and deformation measurements of bioinspired flapping wings in ultra-low Martian density environment. In AIAA SciTech 2020 Forum, p. 2003. AIAA.CrossRefGoogle Scholar
Munday, P.M., Taira, K., Suwa, T., Numata, D. & Asai, K. 2015 Nonlinear lift on a triangular airfoil in low-Reynolds-number compressible flow. J. Aircraft 52, 924931.CrossRefGoogle Scholar
Nagai, H. & Isogai, K. 2011 Effects of flapping wing kinematics on hovering and forward flight aerodynamics. AIAA J. 49 (8), 17501762.CrossRefGoogle Scholar
Nagata, T., Nonomura, T., Takahashi, S. & Fukuda, K. 2020 Direct numerical simulation of subsonic, transonic and supersonic flow over an isolated sphere up to a Reynolds number of 1000. J. Fluid Mech. 904, A36.CrossRefGoogle Scholar
Nakata, T. & Liu, H. 2012 Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proc. R. Soc. B 279 (1729), 722731.CrossRefGoogle ScholarPubMed
Othman, A.K., Zekry, D.A., Saro-Cortes, V., Lee, K.J. & Wissa, A.A. 2023 Aerial and aquatic biological and bioinspired flow control strategies. Commun. Engng 2, 30.CrossRefGoogle Scholar
Palmer, C. 2021 SpaceX starship lands on Earth, but manned missions to Mars will require more. Engineering 7, 13451347.CrossRefGoogle Scholar
Pesavento, U. & Wang, Z.J. 2009 Flapping wing flight can save aerodynamic power compared to steady flight. Phys. Rev. Lett. 103 (11), 118102.CrossRefGoogle ScholarPubMed
Peskin, C.S. 2002 The immersed boundary method. Acta Numerica 11, 479517.CrossRefGoogle Scholar
Phillips, N., Knowles, K. & Bomphrey, R.J. 2015 The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Bioinspir. Biomim. 10 (5), 056020.CrossRefGoogle ScholarPubMed
Phillips, N., Knowles, K. & Bomphrey, R.J. 2017 Petiolate wings: effects on the leading-edge vortex in flapping flight. Interface Focus 7 (1), 20160084.CrossRefGoogle ScholarPubMed
Pohly, J.A., Kang, C.-K., Landrum, D.B., Bluman, J.E. & Aono, H. 2021 Data-driven CFD scaling of bioinspired Mars flight vehicles for hover. Acta Astronaut. 180, 545559.CrossRefGoogle ScholarPubMed
Quinn, D.B., Lauder, G.V. & Smits, A.J. 2014 Scaling the propulsive performance of heaving flexible panels. J. Fluid Mech. 738, 250267.CrossRefGoogle Scholar
Rodríguez, I., Lehmkuhl, O., Borrell, R. & Oliva, A. 2013 Flow dynamics in the turbulent wake of a sphere at sub-critical Reynolds numbers. Comput. Fluids 80, 233243.CrossRefGoogle Scholar
Sakamoto, H. & Haniu, H. 1990 A study on vortex shedding from spheres in a uniform flow. J. Fluids Engng 112 (4), 386392.CrossRefGoogle Scholar
Sane, S.P. & Dickinson, M.H. 2001 The control of flight force by a flapping wing: lift and drag production. J. Expl Biol. 204 (15), 26072626.CrossRefGoogle ScholarPubMed
Schlueter, K.L., Jones, A.R., Granlund, K. & Ol, M. 2014 Effect of root cutout on force coefficients of rotating wings. AIAA J. 52 (6), 13221325.CrossRefGoogle Scholar
Seiff, A. & Kirk, D.B. 1977 Structure of the atmosphere of Mars in summer at mid-latitudes. J. Geophys. Res. 82, 43644378.CrossRefGoogle Scholar
Senturk, U. & Smits, A.J. 2019 Reynolds number scaling of the propulsive performance of a pitching airfoil. AIAA J. 57 (7), 26632669.CrossRefGoogle Scholar
Shahzad, A., Tian, F.-B., Young, J. & Lai, J.C.S. 2016 Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover. Phys. Fluids 28, 111901.CrossRefGoogle Scholar
Shahzad, A., Tian, F.-B., Young, J. & Lai, J.C.S. 2018 a Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios. J. Fluids Struct. 81, 6996.CrossRefGoogle Scholar
Shahzad, A., Tian, F.-B., Young, J. & Lai, J.C.S. 2018 b Effects of hawkmoth-like flexibility on the aerodynamic performance of flapping wings with different shapes and aspect ratios. Phys. Fluids 30, 091902.CrossRefGoogle Scholar
Shrestha, R., Benedict, M., Hrishikeshavan, V. & Chopra, I. 2016 Hover performance of a small-scale helicopter rotor for flying on Mars. J. Aircraft 53 (4), 11601167.CrossRefGoogle Scholar
Shyy, W., Aono, H., Chimakurthi, S.K., Trizila, P., Kang, C.-K., Cesnik, C.E.S. & Liu, H. 2010 Recent progress in flapping wing aerodynamics and aeroelasticity. Prog. Aerosp. Sci. 46 (7), 284327.CrossRefGoogle Scholar
Sullivan, R., Greeley, R., Kraft, M., Wilson, G., Golombek, M., Herkenhoff, K., Murphy, J. & Smith, P. 2000 Results of the imager for Mars Pathfinder windsock experiment. J. Geophys. Res. 105 (E10), 2454724562.CrossRefGoogle Scholar
Sun, M. & Xiong, Y. 2005 Dynamic flight stability of a hovering bumblebee. J. Expl Biol. 208 (3), 447459.CrossRefGoogle ScholarPubMed
Taha, H.E., Hajj, M.R. & Nayfeh, A.H. 2012 Flight dynamics and control of flapping-wing MAVs: a review. Nonlinear Dyn. 70, 907939.CrossRefGoogle Scholar
Tian, F.-B., Dai, H., Luo, H., Doyle, J.F. & Rousseau, B. 2014 Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems. J. Comput. Phys. 258, 451469.CrossRefGoogle Scholar
Tian, F.-B., Luo, H., Song, J. & Lu, X.-Y. 2013 Force production and asymmetric deformation of a flexible flapping wing in forward flight. J. Fluids Struct. 36, 149161.CrossRefGoogle Scholar
Tian, F.-B., Tobing, S., Young, J., Lai, J.C.S., Walker, S.M., Taylor, G.K. & Thomas, A.L.R. 2019 Aerodynamic characteristics of hoverflies during hovering flight. Comput. Fluids 183, 7583.CrossRefGoogle Scholar
Tobing, S., Young, J. & Lai, J. 2013 A numerical analysis of bumblebee propulsion. In 31st AIAA Applied Aerodynamics Conference, p. 3049. AIAA.CrossRefGoogle Scholar
Tobing, S., Young, J. & Lai, J.C.S. 2017 Effects of wing flexibility on bumblebee propulsion. J. Fluids Struct. 68, 141157.CrossRefGoogle Scholar
Tzanetos, T., et al. 2022 Ingenuity Mars Helicopter: rfom technology demonstration to extraterrestrial scout. In 2022 IEEE Aerospace Conference (AERO), 5-12 March, pp. 119. Big Sky, MT, USA. IEEE.Google Scholar
Veismann, M., Dougherty, C., Rabinovitch, J., Quon, A. & Gharib, M. 2021 Low-density multi-fan wind tunnel design and testing for the Ingenuity Mars helicopter. Exp. Fluids 62, 193.CrossRefGoogle Scholar
Viieru, D., Tang, J., Lian, Y., Liu, H. & Shyy, W. 2006 Flapping and flexible wing aerodynamics of low Reynolds number flight vehicles. In 44th AIAA Aerospace Sciences Meeting and Exhibit, p. 503. AIAA.CrossRefGoogle Scholar
Vreman, A.W. 1995 Direct and Large-eddy Simulation of the Compressible Turbulent Mixing Layer. Universiteit Twente Enschede.Google Scholar
Wang, C., Tang, H. & Zhang, X. 2022 a Fluid–structure interaction of bio-inspired flexible slender structures: a review of selected topics. Bioinspir. Biomim. 17 (4), 041002.CrossRefGoogle ScholarPubMed
Wang, J., Han, P., Zhu, R., Liu, G., Deng, X. & Dong, H. 2018 Wake capture and aerodynamics of passively pitching tandem flapping plates. In 2018 Fluid Dynamics Conference, p. 3236. AIAA.CrossRefGoogle Scholar
Wang, L., Currao, G.M.D., Han, F., Neely, A.J., Young, J. & Tian, F.-B. 2017 An immersed boundary method for fluid–structure interaction with compressible multiphase flows. J. Comput. Phys. 346, 131151.CrossRefGoogle Scholar
Wang, L. & Tian, F.-B. 2019 Numerical study of flexible flapping wings with an immersed boundary method: fluid–structure–acoustics interaction. J. Fluids Struct. 90, 396409.CrossRefGoogle Scholar
Wang, L. & Tian, F.-B. 2020 Numerical study of sound generation by three-dimensional flexible flapping wings during hovering flight. J. Fluids Struct. 99, 103165.CrossRefGoogle Scholar
Wang, L., Tian, F.-B. & Liu, H. 2022 b Numerical study of three-dimensional flapping wings hovering in ultra-low-density atmosphere. Phys. Fluids 34 (4), 041903.CrossRefGoogle Scholar
Wang, L., Young, J. & Tian, F.-B. 2024 An immersed boundary method for the thermo-fluid–structure interaction in rarefied gas flows. Phys. Fluids 36, 013616.CrossRefGoogle Scholar
Wang, Q., Goosen, J.F.L. & van Keulen, F. 2016 A predictive quasi-steady model of aerodynamic loads on flapping-wings. J. Fluid Mech. 800, 688719.CrossRefGoogle Scholar
Weis-Fogh, T. 1973 Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Expl Biol. 59 (1), 169230.CrossRefGoogle Scholar
Xiao, T. & Liu, H. 2020 Exploring a bumblebee-inspired power-optimal flapping-wing design for hovering on Mars based on a surrogate model. J. Biomech. Sci. Engng 15, 20-00001.CrossRefGoogle Scholar
Yun, G., Kim, D. & Choi, H. 2006 Vortical structures behind a sphere at subcritical Reynolds numbers. Phys. Fluids 18 (1), 015102.CrossRefGoogle Scholar