Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T10:25:22.959Z Has data issue: false hasContentIssue false

Rough-wall turbulent boundary layers in the transition regime

Published online by Cambridge University Press:  21 April 2006

Promode R. Bandyopadhyay
Affiliation:
Mail Stop 163. NASA Langley Research Center, Hampton, VA 23665-5225, USA

Abstract

This paper describes an experimental study of turbulent boundary layers over two-dimensional spanwise groove and three-dimensional sandgrain roughnesses in the ‘transition regime’ between hydraulically smooth and fully rough conditions. Mean-flow measurements show that a state of kinematic near-self-preservation is also reached by sandgrain roughness and not just by d-type grooved roughness alone as commonly believed; sandgrain roughness simply requires an order-of-magnitude-longer length to reach such a state. The two roughness Reynolds numbers demarcating the boundaries of the transition regime of k-type roughnesses are found to decrease with increasing roughness-element spanwise aspect ratio (span/height). A more important role of the upper-Reynolds-number limit of the transition regime in the drag behaviour is indicated. The two Reynolds-number limits of the transition regime correlate with the two critical Reynolds numbers that describe the stability of the vortex-shedding process existing behind a similar but isolated roughness element lying submerged in an otherwise laminar boundary layer. The results provide a guideline for reducing k-type rough-wall drag by lowering the spanwise aspect ratio of the roughness elements. The vortex-shedding process in rough-wall turbulent boundary layers is described by the stability parameter $U\tau (\overline{T}/\nu)^{\frac{1}{2}}$ whose value is the same for all roughnesses examined herein; here Uτ is the friction velocity, $\overline{T}$ is the mean time period of vortex shedding and v is the kinematic viscosity of the fluid.

Type
Research Article
Copyright
© 1987 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia, R. A. & Luxton, R. E. 1971 The response of a turbulent boundary layer to a step change in surface roughness. Part 1. Smooth to rough. J. Fluid Mech. 48, 721761.Google Scholar
Bandyopadhyay, P. R. 1986 Drag reducing outer-layer devices in rough-wall turbulent boundary layers. Exp. Fluids 4, 247256.Google Scholar
Bessem, J. M. & Stevens, L. J. 1984 Cross-correlation measurements in a turbulent boundary layer above a rough wall. Phys. Fluids 27, 23652366.Google Scholar
Bettermann, D. 1965 Contribution a l'etude de la couche limite turbulente le long de plaques rugueuses. Rep. 65–6, CNRS, Paris (in French).
Black, T. J. 1968 An analytical study of the measured wall pressure field under supersonic turbulent boundary layers. NASA CR-888.
Clauser, F. H. 1956 The turbulent boundary layer. Adv. App. Mech. 4, 151.Google Scholar
Colebrook, C. F. & White, C. M. 1937 Experiments with fluid motion in roughened pipes. Proc. R. Soc. Lond. A 161, 367381.Google Scholar
Dvorak, F. A. 1969 Calculation of turbulent boundary layers on rough surfaces in pressure gradient. AIAA J. 7, 17521759.Google Scholar
Furuya, Y. & Miyata, M. 1972 Visual studies on the wake of a roughness element proximate to a wall. Mem. Fac. Engng, Nagoya University 24, 278293.Google Scholar
Furuya, Y., Miyata, M. & Fujita, H. 1976 Turbulent boundary layer and flow resistance on plates roughened by wires. ASME PAPER 76-FE-6.
Glotov, G. F. & Korontsvit, Iu. F. 1983 An investigation of a method for controlling a three-dimensional separation zone, TsAGI. Uchenye Zapiski, 14, 126131 (in Russian).Google Scholar
Goldstein, S. 1936 A note on roughness. Aero. Res. Counc. R&M 1763.
Grass, A. J. 1971 Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50, 233255.Google Scholar
GÜven, O., Farel, C. & Patel, V. C. 1983 Boundary-layer development on a circular cylinder with ribs. Trans. ASME I: J. Fluids Engng. 105, 179184Google Scholar
Hama, F. R. 1954 Boundary layer characteristics for smooth and rough surfaces. Trans. Soc. Naval Archit. Marine Engrs 62, 333358.Google Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.Google Scholar
Kim, H. T., Kline, S. J. & Reynolds, W. C. 1971 The production of turbulence near a smooth wall in a turbulent boundary layer. J. Fluid Mech. 50, 133160.Google Scholar
Klebanoff, P. S., Cleveland, W. G. & Tidstrom, K. D. 1987 On three-dimensional roughness and the evolution of a turbulent boundary layer. AEDC TR-87-7.
Klein, D. 1977 Pressure measurements and flow visualization over roughness elements. Ph.D. thesis, University of Missouri, Columbia.
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 1. MIT Press.
Moore, W. L. 1951 An experimental investigation of boundary layer development along a rough surface. Ph.D. thesis, State University of Iowa.
Nikuradse, J. 1933 Strömungsgesetze in rouhen Rohren. VDI Forchung. No. 361 (NACA TM1292).
Osaka, H., Nishino, T., Oyama, S. & Kogeyama, Y. 1982 Selfpreservation for a turbulent boundary layer over a. d-type rough surface. Mem. Fac. Engng, Yamaguch University 33, 916 (in Japanese).Google Scholar
Perry, A. E. & Joubert, P. N. 1963 Rough wall boundary layers in adverse pressure gradients. J. Fluid Mech. 17, 193211.Google Scholar
Perry, A. E., Schofield, W. H. & Joubert, P. N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37, 383413.Google Scholar
Prandtl, L. & Schlichting, H. 1934 Das Wiederstandagesetz rouher Platten. Werft Reederer Hafen 15, 14.Google Scholar
Purtell, L. P., Klebanoff, P. S. & Buckley, F. T. 1981 Turbulent boundary layer at low Reynolds number. Phys. Fluids 24, 802811.Google Scholar
Rotta, J. C. 1950 Das in Wandñahe gültige Geschwindigkeitsgesetz turbulenter Strömungen. Ing.-Arch. 18, 277280.Google Scholar
Rotta, J. C. 1962 Turbulent boundary layers in incompressible flow. Prog. Aero. Sci. 2, 1219.Google Scholar
Schiller, L. 1932 Strömung in Rohren. Handbuch der Experimentalphysik, vol. 4. pp. 1207.
Schlichting, H. 1936 Experimentelle Untersuchungen zum Rauhigkeitsproblem. Ing.-Arch. VII, 1, 134.Google Scholar
Schlichting, H. 1979 Boundary-Layer Theory, 7th edn. McGraw-Hill.
Simpson, R. L. 1973 A generalized correlation of roughness density effects on the turbulent boundary layer. AIAA J. 11, 242244.Google Scholar
Smith, A. M. O. & Clutter, D. W. 1959 The smallest height of roughness capable of affecting boundary-layer transition. J. Aero. Sci. 26, 229256.Google Scholar
Townes, H. W. & Sabersky, R. H. 1966 Experiments on the flow over a rough surface. Intl J. Heat Mass Transfer 9, 729738.Google Scholar