Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T07:28:40.589Z Has data issue: false hasContentIssue false

Roughness-induced transition by quasi-resonance of a varicose global mode

Published online by Cambridge University Press:  11 December 2017

M. A. Bucci*
Affiliation:
DynFluid, Arts et Métiers ParisTech, 151 Bd. de l’Hopital, 75013, Paris, France
D. K. Puckert
Affiliation:
Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, D-70569 Stuttgart, Germany
C. Andriano
Affiliation:
DynFluid, Arts et Métiers ParisTech, 151 Bd. de l’Hopital, 75013, Paris, France
J.-Ch. Loiseau
Affiliation:
DynFluid, Arts et Métiers ParisTech, 151 Bd. de l’Hopital, 75013, Paris, France
S. Cherubini
Affiliation:
DMMM, Politecnico di Bari, via Re David 200, 70100 Bari, Italy
J.-Ch. Robinet
Affiliation:
DynFluid, Arts et Métiers ParisTech, 151 Bd. de l’Hopital, 75013, Paris, France
U. Rist
Affiliation:
Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Pfaffenwaldring 21, D-70569 Stuttgart, Germany
*
Email address for correspondence: [email protected]

Abstract

The onset of unsteadiness in a boundary-layer flow past a cylindrical roughness element is investigated for three flow configurations at subcritical Reynolds numbers, both experimentally and numerically. On the one hand, a quasi-periodic shedding of hairpin vortices is observed for all configurations in the experiment. On the other hand, global stability analyses have revealed the existence of a varicose isolated mode, as well as of a sinuous one, both being linearly stable. Nonetheless, the isolated stable varicose modes are highly sensitive, as ascertained by pseudospectrum analysis. To investigate how these modes might influence the dynamics of the flow, an optimal forcing analysis is performed. The optimal response consists of a varicose perturbation closely related to the least stable varicose isolated eigenmode and induces dynamics similar to that observed experimentally. The quasi-resonance of such a global mode to external forcing might thus be responsible for the onset of unsteadiness at subcritical Reynolds numbers, hence providing a simple explanation for the experimental observations.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acarlar, M. S. & Smith, C. R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.CrossRefGoogle Scholar
Åkervik, E., Brandt, L., Henningson, D. S., Hoepffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18, 068102.Google Scholar
Arnal, D., Houdeville, R., Séraudie, A. & Vermeersch, O. 2011 Overview of laminar-turbulent transition investigations at ONERA toulouse. In 41st AIAA Fluid Fynamics Conference.Google Scholar
Bagheri, S., Schlatter, P., Schmid, P. J. & Henningson, D. S. 2009 Global stability of a jet in crossflow. J. Fluid Mech. 624, 3344.CrossRefGoogle Scholar
Baker, C. J. 1978 The laminar horseshoe vortex. J. Fluid Mech. 95, 347367.CrossRefGoogle Scholar
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2012 Compressibility effects on roughness-induced boundary layer transition. Intl J. Heat Fluid Flow 35, 4551.Google Scholar
Braslow, A. L.1960 Review of the effect of distributed surface roughness on boundary-layer transition. Tech. Rep. Advisory Group for Aeronautical Research and Development, Paris (France).Google Scholar
Cherubini, S., De Tullio, M. D., De Palma, P. & Pascazio, G. 2013 Transient growth in the flow past a three-dimensional smooth roughness element. J. Fluid Mech. 724, 642670.Google Scholar
Citro, V., Giannetti, F., Luchini, P. & Auteri, F. 2015 Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27 (8), 084110.CrossRefGoogle Scholar
Cossu, C. & Brandt, L. 2004 On tollmien-schlichting-like waves in streaky boundary layers. Eur. J. Mech. (B/Fluids) 23, 815833.CrossRefGoogle Scholar
Denissen, N. A. & White, E. B. 2008 Roughness-induced bypass transition revisited. AIAA J. 46 (7), 18741877.CrossRefGoogle Scholar
Denissen, N. A. & White, E. B. 2009 Continuous spectrum analysis of roughness-induced transient growth. Phys. Fluids 21, 114105.CrossRefGoogle Scholar
Deville, M. O., Fischer, P. F. & Mund, E. H. 2002 High-Order Methods for Incompressible Fluid Flow. Cambridge University Press.CrossRefGoogle Scholar
von Doenhoff, A. E. & Baslow, A. L. 1961 Boundary Layer and Flow Control, its Principles and Application – The Effect of Distributed Surface Roughness on Laminar Flows, pp. 657681. Pergamon.Google Scholar
Edwards, W. S., Tuckerman, L. S., Friesner, R. A. & Sorensen, D. C. 1994 Krylov methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 110 (1), 82102.Google Scholar
Ergin, F. G. & White, E. B. 2006 Unsteady and transitional flows behind roughness elements. AIAA J. 44 (11), 25042514.CrossRefGoogle Scholar
Fischer, P. & Choudhari, M. 2004 Numerical simulation of roughness induced transient growth in a laminar boundary layer. In 34th AIAA Fluid Dynamics Conference.Google Scholar
Fischer, P. F., Kruse, J., Mullen, J., Tufo, H., Lottes, J. W. & Kerkemeier, S. G.2008 Nek5000–open source spectral element CFD solver. Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL. http://nek5000.mcs.anl.gov/index.php/MainPage.Google Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2004 Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Phys. Fluids 16 (10), 36273638.Google Scholar
Gregory, N. & Walker, W. S.1955 The effect of transition of isolated surface excrescences in the boundary layer. Tech. Rep. R. & M 2779. Aeronautical Research Council, England.Google Scholar
van Ingen, J. L.1956 A suggested semi-empirical method for the calculation of the boundary layer transition region. Tech. Rep., VTH-74.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Joslin, R. D. & Grosch, C. E. 1995 Growth characterisitcs downstream of a shallow bump: computation and experiments. Phys. Fluids 7, 30423047.Google Scholar
Klebanoff, P. S., Cleveland, W. G. & Tidstrom, K. D. 1992 On the evolution of a turbulent boundary layer induced by a three-dimensional roughness element. J. Fluid Mech. 237, 101187.CrossRefGoogle Scholar
Klebanoff, P. S. & Tidstrom, K. D. 1972 Mechanism by which a two-dimensional roughness element induces boundary-layer transition. Phys. Fluids 15 (7), 11731188.Google Scholar
Kurz, H. B. E. & Kloker, M. J. 2016 Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer. J. Fluid Mech. 796, 158194.Google Scholar
Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28, 735756.CrossRefGoogle Scholar
Lechoucq, R. B. & Sorensen, D. C. 1996 Deflation techniques for an implicitely restarted Arnoldi iteration. SIAM J. Matrix Anal. Applics 17 (4), 789821.Google Scholar
Loiseau, J.-C., Robinet, J.-C., Cherubini, S. & Leriche, E. 2014 Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175211.CrossRefGoogle Scholar
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 493517.Google Scholar
Lundbladh, A., Berlin, S., Skote, M., Hildings, C., Choi, J., Kim, J. & Henningson, D. S.1999 An efficient spectral method for simulation of incompressible flow over a flat plate. Trita-mek. Tech. Rep. 11.Google Scholar
Monokrousos, A., Åkervik, E., Brandt, L. & Henningson, D. S. 2010 Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers. J. Fluid Mech. 650, 181214.Google Scholar
Patera, A. T. 1984 A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468488.CrossRefGoogle Scholar
Perraud, J., Arnal, D., Séraudie, A. & Tran, D. 2004 Laminar-turbulent transition on aerodynamics surfaces with imperfections. In Proceedings of RTO AVT-111 Symposium, Prague, Czech Republic.Google Scholar
Puckert, D. K., Dieterle, M. & Rist, U. 2017 Reduction of freestream turbulence at low velocities. Exp. Fluids 58 (5), 45.Google Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. Google Scholar
Shahinfar, S., Fransson, J. H. M. & Talamelli, A. 2012 Revival of classical vortex generators now for transition delay. Phys. Rev. Lett. 109 (7), 074501.Google Scholar
Shin, Y., Rist, U. & Krämer, E. 2015 Stability of the laminar boundary-layer flow behind a roughness element. Exp. Fluids 56 (1), 11.Google Scholar
Smith, A. M. O. & Gamberoni, N.1956 Transition, pressure gradient and stability theory. Tech. Rep. ES-26388, Douglas Aircraft Company.Google Scholar
Sorensen, D. C. 1992 Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Applics 13, 357385.Google Scholar
Stewart, G. W. 2001 A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Applics 23, 601614.Google Scholar
Subasi, A., Puckert, D., Gunes, H. & Rist, U. 2015 Calibration of constant temperature anemometry with hot-film probes for low speed laminar water channel flows. In The 13th International Symposium on Fluid Control, Measurement and Visualization. Doha, Qatar. Flucome 2015.Google Scholar
Subbareddy, P. K., Bartkowicz, M. D. & Candler, G. V. 2014 Direct numerical simulation of high-speed transition due to an isolated roughness element. J. Fluid Mech. 748, 848878.Google Scholar
Tani, I., Komoda, H. & Komatsu, Y1962 Boundary-layer transition by isolated roughness. Tech. Rep. 375. Aeronautical Research Institute, University of Tokyo.Google Scholar
Toh, K.-C. & Trefethen, L. N. 1996 Calculation of pseudospectra by the Arnoldi iteration. SIAM J. Sci. Comput. 17 (1), 115.Google Scholar
Trefethen, L. & Embree, M. 2005 Spectra and Pseudospectra. Princeton University Press.Google Scholar
de Tullio, N., Paredes, P., Sandham, N. D. & Theofilis, V. 2013 Laminar-turbulent transition induced by discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613646.CrossRefGoogle Scholar
Tumin, A. & Reshotko, E. 2005 Receptivity of a boundary-layer flow to a three-dimensional hump at finite Reynolds numbers. Phys. Fluids 17, 094101.Google Scholar
Vermeersch, O.2009 Etude et modélisation du phénomène de croissance transition pour des couches limites incompressibles et compressibles. PhD thesis, ISAE, Toulouse.Google Scholar
Ye, Q., Schrijer, F. F. J. & Scarano, F. 2016 Boundary layer transition mechanisms behind a micro-ramp. J. Fluid Mech. 793, 132161.Google Scholar