Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T06:03:46.222Z Has data issue: false hasContentIssue false

Rolling motion of a sphere on a plane boundary in oscillatory flow

Published online by Cambridge University Press:  11 April 2006

C. Samuel Martin
Affiliation:
School of Civil Engineering, Georgia Institute of Technology, Atlanta
M. Padmanabhan
Affiliation:
School of Civil Engineering, Georgia Institute of Technology, Atlanta
C. D. Ponce-Campos
Affiliation:
University of Michigan, Ann Arbor

Abstract

The rolling motion of a sphere on a smooth plane boundary in a simple-harmonic water motion has been analytically and experimentally investigated. For spheres having specific gravities ranging from 0·09 to 15·18 the sphere motion was found to be sinusoidal for both low and high values of the period parameter defined by Keulegan & Carpenter. The knowledge of the sphere motion, and hence the resultant force, allowed the determination of inertia and drag coefficients from Fourier-averaging techniques. Experiments in the inertial range yielded an added-mass coefficient of 1·2, compared with 0·67 from inviscid theory for translating spheres. For values of the period parameter greater than 30 the drag coefficient is reported to be approximately 0·74.

Type
Research Article
Copyright
© 1976 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Al-Taweel, A. M. & Carley, J. F. 1971 Dynamics of single spheres in pulsated, flowing liquids. Part 1. Experimental method and results. Part 2. Modeling and interpretation of results. Chem. Engng Prog. Symp. Ser. no. 116, 67, 114131.Google Scholar
Basset, A. B. 1910 On the descent of a sphere in a viscous liquid. Quart. J. Math 41, 369381.Google Scholar
Brush, L. M., Ho, H.-W. & Yen, B.-C. 1964 Accelerated motion of a sphere in a viscous fluid. J. Hyd. Division, Proc. A.S.C.E. 90 (HY1), 149160.Google Scholar
Carstens, M. R. 1952 Accelerated motion of a spherical particle. Trans. Am. Geophys. Un 33, 713721.Google Scholar
Carty, J. J. 1957 Resistance coefficients for spheres on a plane boundary. B.S. thesis, Massachusetts Institute of Technology.
Chan, K. W., Baird, M. H. I. & Round, G. F. 1974 Motion of a solid sphere in a horizontally oscillating liquid. Chem. Engng Sci 29, 15851592.Google Scholar
Dean, W. R. & O'Neill, M. E. 1963 A slow motion of viscous liquid caused by the rotation of a solid sphere. Mathematika, 10, 1324.Google Scholar
Eagleson, P. S. & Dean, R. G. 1961 Wave-induced motion of bottom sediment particles. Trans. A.S.C.E 126, 11621189.Google Scholar
Faxén, H. 1921 Einwirkung der Gefasswände auf den Widerstand gegen die Bewegung einer kleinen Kugel in einer zähen Flüssigkeit. Dissertation, Uppsala.
Garrison, C. J. & Berklite, R. B. 1973 Impulsive hydrodynamics of submerged rigid bodies. J. Engng Mech. Div., Proc. A.S.C.E. 99 (EM1), 99120.Google Scholar
Goldman, A. J., Cox, R. G. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a plane wall—I. Motion through a quiescent fluid. Chem. Engng Sci 22, 637651.Google Scholar
Grace, R. A. & Casciano, F. M. 1969 Ocean wave forces on a subsurface sphere. J. Waterways Harbors Div., Proc. A.S.C.E. 95 (WW3), 291317.Google Scholar
Halow, J. S. 1973 Incipient rolling, sliding and suspension of particles in horizontal and inclined turbulent flow. Chem. Engng Sci 28, 112.Google Scholar
Hamilton, W. S. & Lindell, J. E. 1971 Fluid force analysis and accelerating sphere tests. J. Hyd. Div., Proc. A.S.C.E. 97 (HY6), 805817.Google Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.
Hjelmfelt, A. T. & Mockros, L. F. 1967 Stokes flow behavior of an accelerating sphere. J. Engng Mech. Div., Proc. A.S.C.E. 93 (EM6), 87102.Google Scholar
Houghton, G. 1963 The behaviour of particles in a sinusoidal velocity field. Proc. Roy. Soc. A 272, 3343.Google Scholar
Houghton, G. 1966 Particle trajectories and terminal velocities in vertically oscillating fluids. Can. J. Chem. Engng, 44, 9095.Google Scholar
Houghton, G. 1968 Particle retardation in vertically oscillating fluids. Can. J. Chem. Engng, 46, 7981.Google Scholar
Keulegan, G. H. & Carpenter, L. H. 1958 Forces on cylinders and plates in an oscillating fluid. J. Res. Nat. Bur. Stand 60, 423440.Google Scholar
König, W. 1891 Hydrodynamisch—akustische Untersuchungen. Ann. Phys. Chem 42, 353370.Google Scholar
Ladenburg, R. 1907 Über den Einfluss von Wänden auf die Bewegung einer Kugel in einer reibenden Flüssigkeit. Ann. Phys 23, 447458.Google Scholar
Lamb, H. 1932 Hydrodynamics. Dover.
McNown, J. S., Lee, H. M., McPherson, M. B. & Engez, S. M. 1948 Proc. 7th Int. Cong. Appl. Mech. pp. 1729.
Mockros, L. F. & Lai, R. Y. S. 1969 Validity of Stokes theory for accelerating spheres. J. Engng Mech. Div., Proc. A.S.C.E. 95 (EM3), 629640.Google Scholar
Morison, J. R., O'Brien, M. P., Johnson, J. W. & Schaaf, S. A. 1950 The force exerted by surface waves on piles. Petrol. Trans., Am. Inst. Mining Metallurgical Engrs, 189, 149154.Google Scholar
O'Brien, M. P. & Morison, J. R. 1952 The forces exerted by waves on objects. Trans. Am. Geophys. Un 33, 3238.Google Scholar
Odar, F. & Hamilton, W. S. 1964 Forces on a sphere accelerating in a viscous fluid. J. Fluid Mech 25, 302314.Google Scholar
O'Neill, M. E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika, 11, 6774.Google Scholar
Rschevkin, S. N. 1963 The Theory of Sound. Pergamon.
Sarpkaya, T. 1975 Forces on cylinders and spheres in a sinusoidally oscillating fluid. J. Appl. Mech., Trans. A.S.M.E 97, 3237.Google Scholar
Shizgal, B., Goldsmith, H. L. & Mason, S. G. 1965 The flow of suspensions through tubes. Part 4. Oscillatory flow of rigid spheres. Can. J. Chem. Engng, 43, 97101.Google Scholar
Stokes, G. 1851 On the effect of the internal friction of fluids on the motion of pendulums. Camb. Phil. Trans. 9, 8.Google Scholar
Tunstall, E. B. & Houghton, G. 1968 Retardation of falling spheres by hydrodynamic oscillations. Chem. Engng Sci 23, 10671081.Google Scholar
Wagenschein, M. 1921 Experimentelle Untersuchung über das Mitschwingen einer Kugel in einer schwingenden Flüssigkeits-oder Gasmasse. Ann. Phys. Ser 4, 65, 461480.Google Scholar
Waugh, J. G. & Ellis, A. T. 1969 Fluid-free-surface proximity effect on a sphere vertically accelerated from rest. J. Hydronautics 3 (4), 175179.Google Scholar