Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-10T06:23:35.119Z Has data issue: false hasContentIssue false

Reverse Marangoni surfing

Published online by Cambridge University Press:  15 December 2016

Vahid Vandadi
Affiliation:
Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA
Saeed Jafari Kang
Affiliation:
Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA
Hassan Masoud*
Affiliation:
Department of Mechanical Engineering, University of Nevada, Reno, NV 89557, USA
*
Email address for correspondence: [email protected]

Abstract

We theoretically study the surfing motion of chemically and thermally active particles located at a flat liquid–gas interface that sits above a liquid layer of finite depth. The particles’ activity creates and maintains a surface tension gradient resulting in the auto-surfing. It is intuitively perceived that Marangoni surfers propel towards the direction with a higher surface tension. Remarkably, we find that the surfers may propel in the lower surface tension direction depending on their geometry and proximity to the bottom of the liquid layer. In particular, our analytical calculations for Stokes flow and diffusion-dominated scalar fields (i.e. chemical concentration and temperature fields) indicate that spherical particles undergo reverse Marangoni propulsion under confinement whereas disk-shaped surfers always move in the expected direction. We extend our results by proposing an approximate formula for the propulsion speed of oblate spheroidal particles based on the speeds of spheres and disks.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acree, W. E. 1984 Empirical expression for predicting surface-tension of liquid-mixtures. J. Colloid Interface Sci. 101, 575576.CrossRefGoogle Scholar
Adamson, A. W. 1990 Physical Chemistry of Surfaces. Wiley.Google Scholar
Blake, J. R. 1971 A note on the image system for a Stokeslet in a no-slip boundary. Math. Proc. Cambridge 70 (02), 303310.CrossRefGoogle Scholar
Bush, J. W. M. & Hu, D. L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.CrossRefGoogle Scholar
Cheang, U. K., Meshkati, F., Kim, D., Kim, M. J. & Fu, H. C. 2014 Minimal geometric requirements for micropropulsion via magnetic rotation. Phys. Rev. E 90 (3), 033007.Google ScholarPubMed
Davis, A. M. J. 1991 Slow viscous flow due to motion of an annular disk; pressure-driven extrusion through an annular hole in a wall. J. Fluid Mech. 231, 5171.CrossRefGoogle Scholar
Dey, K. K., Wong, F., Altemose, A. & Sen, A. 2016 Catalytic motors–Quo Vadimus? Curr. Opin. Colloid Interface Sci. 21, 413.CrossRefGoogle Scholar
Domínguez, A., Malgaretti, P., Popescu, M. N. & Dietrich, S. 2016 Effective interaction between active colloids and fluid interfaces induced by Marangoni flows. Phys. Rev. Lett. 116, 078301.CrossRefGoogle ScholarPubMed
Dreyfus, R., Baudry, J., Roper, M. L., Fermigier, M., Stone, H. A. & Bibette, J. 2005 Microscopic artificial swimmers. Nature 437 (7060), 862865.CrossRefGoogle ScholarPubMed
Duan, W., Wang, W., Das, S., Yadav, V., Mallouk, T. E. & Sen, A. 2015 Synthetic nano-and micromachines in analytical chemistry: sensing, migration, capture, delivery, and separation. Annu. Rev. Anal. Chem. 8, 311333.CrossRefGoogle ScholarPubMed
Ganatos, P., Pfeffer, R. & Weinbaum, S. 1980 A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. J. Fluid Mech. 99 (04), 755783.CrossRefGoogle Scholar
Girot, A., Danné, N., Würger, A., Bickel, T., Ren, F., Loudet, J. C. & Pouligny, B. 2016 Motion of optically heated spheres at the water-air interface. Langmuir 32 (11), 26872697.CrossRefGoogle ScholarPubMed
Happel, J. & Brenner, H. 1983 Low Reynolds Number Hydrodynamics, with Special Applications to Particulate Media. Prentice-Hall.CrossRefGoogle Scholar
Lauga, E. & Davis, A. M. J. 2012 Viscous Marangoni propulsion. J. Fluid Mech. 705, 120133.CrossRefGoogle Scholar
Maggi, C., Saglimbeni, F., Dipalo, M., De Angelis, F. & Di Leonardo, R. 2015 Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects. Nat. Commun. 6, 7855.CrossRefGoogle ScholarPubMed
Malgaretti, P., Popescu, M. N. & Dietrich, S. 2016 Active colloids at fluid interfaces. Soft Matt. 12, 40074023.CrossRefGoogle ScholarPubMed
Masoud, H. & Alexeev, A. 2010 Modeling magnetic microcapsules that crawl in microchannels. Soft Matt. 6 (4), 794799.CrossRefGoogle Scholar
Masoud, H., Bingham, B. I. & Alexeev, A. 2012 Designing maneuverable micro-swimmers actuated by responsive gel. Soft Matt. 8 (34), 89448951.CrossRefGoogle Scholar
Masoud, H. & Shelley, M. J. 2014 Collective surfing of chemically active particles. Phys. Rev. Lett. 112, 128304.CrossRefGoogle ScholarPubMed
Masoud, H. & Stone, H. A. 2014 A reciprocal theorem for Marangoni propulsion. J. Fluid Mech. 741, R4.CrossRefGoogle Scholar
Nakata, S., Iguchi, Y., Ose, S., Kuboyama, M., Ishii, T. & Yoshikawa, K. 1997 Self-rotation of a camphor scraping on water: new insight into the old problem. Langmuir 13 (16), 44544458.CrossRefGoogle Scholar
O’Neill, M. E., Ranger, K. B. & Brenner, H. 1986 Slip at the surface of a translating–rotating sphere bisected by a free surface bounding a semi-infinite viscous fluid: removal of the contact-line singularity. Phys. Fluids 29 (4), 913924.CrossRefGoogle Scholar
Pimienta, V. & Antoine, C. 2014 Self-propulsion on liquid surfaces. Curr. Opin. Colloid Interface Sci. 19 (4), 290299.CrossRefGoogle Scholar
Pozrikidis, C. 2007 Particle motion near and inside an interface. J. Fluid Mech. 575, 333357.CrossRefGoogle Scholar
Rayleigh, Lord 1889 Measurements of the amount of oil necessary in order to check the motions of camphor upon water. Proc. R. Soc. Lond. 47 (286–291), 364367.Google Scholar
Sánchez, S., Soler, L. & Katuri, J. 2015 Chemically powered micro-and nanomotors. Angew. Chem. Intl Ed. Engl. 54 (5), 14141444.CrossRefGoogle ScholarPubMed
Sitti, M. 2009 Miniature devices: voyage of the microrobots. Nature 458 (7242), 11211122.CrossRefGoogle ScholarPubMed
Sitti, M., Ceylan, H., Hu, W., Giltinan, J., Turan, M., Yim, S. & Diller, E. 2015 Biomedical applications of untethered mobile milli/microrobots. Proc. IEEE 103 (2), 205224.CrossRefGoogle ScholarPubMed
Stone, H. A. & Masoud, H. 2015 Mobility of membrane-trapped particles. J. Fluid Mech. 781, 494505.CrossRefGoogle Scholar
Wang, W., Duan, W., Ahmed, S., Mallouk, T. E. & Sen, A. 2013 Small power: autonomous nano-and micromotors propelled by self-generated gradients. Nano Today 8 (5), 531554.CrossRefGoogle Scholar
Würger, A. 2014 Thermally driven Marangoni surfers. J. Fluid Mech. 752, 589601.CrossRefGoogle Scholar
Zhang, H., Duan, W., Liu, L. & Sen, A. 2013 Depolymerization-powered autonomous motors using biocompatible fuel. J. Am. Chem. Soc. 135 (42), 1573415737.CrossRefGoogle ScholarPubMed
Zhao, G. & Pumera, M. 2012 Liquid–liquid interface motion of a capsule motor powered by the interlayer Marangoni effect. J. Phys. Chem. B 116 (35), 1096010963.CrossRefGoogle ScholarPubMed