Hostname: page-component-669899f699-7xsfk Total loading time: 0 Render date: 2025-04-25T04:53:39.093Z Has data issue: false hasContentIssue false

Reverse capillary trapping and self-removal of non-aqueous fluid from dead-end structures by nanoparticle suspension

Published online by Cambridge University Press:  14 April 2025

Wenhai Lei
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
Xukang Lu
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China
Guang Yang
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China
Shervin Bagheri
Affiliation:
Department of Engineering Mechanics, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
Moran Wang*
Affiliation:
Department of Engineering Mechanics, Tsinghua University, Beijing100084, PR China
*
Corresponding author: Moran Wang, [email protected]

Abstract

We report an anomalous capillary phenomenon that reverses typical capillary trapping via nanoparticle suspension and leads to a counterintuitive self-removal of non-aqueous fluid from dead-end structures under weakly hydrophilic conditions. Fluid interfacial energy drives the trapped liquid out by multiscale surfaces: the nanoscopic structure formed by nanoparticle adsorption transfers the molecular-level adsorption film to hydrodynamic film by capillary condensation, and maintains its robust connectivity, then the capillary pressure gradient in the dead-end structures drives trapped fluid motion out of the pore continuously. The developed mathematical models agree well with the measured evolution dynamics of the released fluid. This reversing capillary trapping phenomenon via nanoparticle suspension can be a general event in a random porous medium and could dramatically increase displacement efficiency. Our findings have implications for manipulating capillary pressure gradient direction via nanoparticle suspensions to trap or release the trapped fluid from complex geometries, especially for site-specific delivery, self-cleaning, or self-recover systems.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Aidun, C.K. & Clausen, J.R. 2010 Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42 (1), 439472.CrossRefGoogle Scholar
Al-Anssari, S., Barifcani, A., Wang, S., Maxim, L. & Iglauer, S. 2016 Wettability alteration of oil-wet carbonate by silica nanofluid. J. Colloid Interface Sci. 461, 435442.CrossRefGoogle ScholarPubMed
Anand, U., Ghosh, T., Aabdin, Z., Koneti, S., Xu, X., Holsteyns, F. & Mirsaidov, U. 2021 Dynamics of thin precursor film in wetting of nanopatterned surfaces. Proc. Natl Acad. Sci. USA 118 (38), e2108074118.CrossRefGoogle Scholar
Binks, B.P. 2002 Particles as surfactants–similarities and differences. Curr. Opin. Colloid Interface Sci. 7 (1), 2141.CrossRefGoogle Scholar
Bintein, P.-B., Lhuissier, H., Mongruel, A., Royon, L. & Beysens, D. 2019 Grooves accelerate dew shedding. Phys. Rev. Lett. 122 (9), 098005.CrossRefGoogle Scholar
Chen, Y., Li, Y., Valocchi, A. & Christensen, K. 2017 Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions. J. Contam. Hydrol. 212, 1427.CrossRefGoogle Scholar
Concus, P. & Finn, R. 1969 On the behavior of a capillary surface in a wedge. Proc. Natl Acad. Sci. USA 63 (2), 292299.CrossRefGoogle Scholar
Cybulski, O., Garstecki, P. & Grzybowski, B. 2019 Oscillating droplet trains in microfluidic networks and their suppression in blood flow. Nat. Phys. 15 (7), 706713.CrossRefGoogle Scholar
Datta, S.S., Chiang, H., Ramakrishnan, T. & Weitz, D.A. 2013 Spatial fluctuations of fluid velocities in flow through a three-dimensional porous medium. Phys. Rev. Lett. 111 (6), 064501.CrossRefGoogle ScholarPubMed
Dudukovic, N.A., Fong, E.J., Gemeda, H.B., DeOtte, J.R., Cerón, M.R., Moran, B.D., Davis, J.T., Baker, S.E. & Duoss, E.B. 2021 Cellular fluidics. Nature 595 (7865), 5865.CrossRefGoogle ScholarPubMed
Guo, Z., Zheng, C. & Shi, B. 2002 Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65 (4), 046308.Google ScholarPubMed
Hardt, S. & McHale, G. 2022 Flow and drop transport along liquid-infused surfaces. Annu. Rev. Fluid Mech. 54 (1), 83104.CrossRefGoogle Scholar
Hirasaki, G. 1991 Wettability: fundamentals and surface forces. SPE Formation Evaluation 6 (2), 217226.CrossRefGoogle Scholar
Huppert, H.E. & Neufeld, J.A. 2014 The fluid mechanics of carbon dioxide sequestration. Annu. Rev. Fluid Mech. 46 (1), 255272.CrossRefGoogle Scholar
Isa, L., Lucas, F., Wepf, R. & Reimhult, E. 2011 Measuring single-nanoparticle wetting properties by freeze-fracture shadow-casting cryo-scanning electron microscopy. Nat. Commun. 2 (1), 438.CrossRefGoogle ScholarPubMed
Israelachvili, J.N. 2011 Intermolecular and Surface Forces. Academic.Google Scholar
Jiménez-Martínez, J., Hyman, J.D., Chen, Y., Carey, J., Porter, M.L., Kang, Q., Guthrie, J., George, V. & Hari, S. 2020 Homogenization of dissolution and enhanced precipitation induced by bubbles in multiphase flow systems. Geophys. Res. Lett. 47 (7), e2020GL087163.CrossRefGoogle Scholar
Kibbey, T.C. 2013 The configuration of water on rough natural surfaces: implications for understanding air–water interfacial area, film thickness, and imaging resolution. Water Resour. Res. 49 (8), 47654774.CrossRefGoogle Scholar
Kovscek, A., Wong, H. & Radke, C. 1993 A pore-level scenario for the development of mixed wettability in oil reservoirs. AIChE J. 39 (6), 10721085.CrossRefGoogle Scholar
Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G. & Viggen, E.M. 2017 The Lattice Boltzmann Method. Springer.CrossRefGoogle Scholar
Ladd, A.J. & Szymczak, P. 2021 Reactive flows in porous media: challenges in theoretical and numerical methods. Annu. Rev. Chem. Biomol. Engng 12 (1), 543571.CrossRefGoogle ScholarPubMed
Lei, W., Gong, W., Lu, X. & Wang, M. 2024 Fluid entrapment during forced imbibition in a multidepth microfluidic chip with complex porous geometry. J. Fluid Mech. 987, A3.CrossRefGoogle Scholar
Lei, W., Gong, W. & Wang, M. 2023 a Wettability effect on displacement in disordered media under preferential flow conditions. J. Fluid Mech. 975, A33.CrossRefGoogle Scholar
Lei, W., Liu, T., Xie, C., Yang, H., Wu, T. & Wang, M. 2020 Enhanced oil recovery mechanism and recovery performance of micro-gel particle suspensions by microfluidic experiments. Energy Sci. Engng 8 (4), 986998.CrossRefGoogle Scholar
Lei, W., Lu, X., Gong, W. & Wang, M. 2023 b Triggering interfacial instabilities during forced imbibition by adjusting the aspect ratio in depth-variable microfluidic porous media. Proc. Natl Acad. Sci. USA 120 (50), e2310584120.CrossRefGoogle Scholar
Lei, W., Lu, X., Liu, F. & Wang, M. 2022 Non-monotonic wettability effects on displacement in heterogeneous porous media. J. Fluid Mech. 942, R5.CrossRefGoogle Scholar
Lei, W., Lu, X. & Wang, M. 2023 c Multiphase displacement manipulated by micro/nanoparticle suspensions in porous media via microfluidic experiments: from interface science to multiphase flow patterns. Adv. Colloid Interface Sci. 311, 102826.CrossRefGoogle ScholarPubMed
Li, C., Yu, C., Zhou, S., Dong, Z. & Jiang, L. 2020 Liquid harvesting and transport on multiscaled curvatures. Proc. Natl Acad. Sci. USA 117 (38), 2343623442.CrossRefGoogle Scholar
Li, J., Qin, Q.H., Shah, A., Ras Robin, H., Tian, X. & Jokinen, V. 2016 Oil droplet self-transportation on oleophobic surfaces. Sci. Adv. 2 (6), e1600148.CrossRefGoogle ScholarPubMed
Macminn, C., Szulczewski, M. & Juanes, R. 2010 CO $_2$ migration in saline aquifers. Part 1. Capillary trapping under slope and groundwater flow. J. Fluid Mech. 662, 329351.CrossRefGoogle Scholar
Mahani, H., Menezes, R., Berg, S., Fadili, A., Nasralla, R., Voskov, D. & Joekar-Niasar, V. 2017 Insights into the impact of temperature on the wettability alteration by low salinity in carbonate rocks. Energy Fuels 31 (8), 78397853.CrossRefGoogle Scholar
Marinova, K., Alargova, R., Denkov, N., Velev, O., Petsev, D., Ivanov, I. & Borwankar, R. 1996 Charging of oil–water interfaces due to spontaneous adsorption of hydroxyl ions. Langmuir 12 (8), 20452051.CrossRefGoogle Scholar
Morrow, N.R. 1990 Interfacial Phenomena in Petroleum Recovery. CRC.Google Scholar
Nikolov, A., Wu, P. & Wasan, D. 2019 Structure and stability of nanofluid films wetting solids: an overview. Adv. Colloid Interface Sci. 264, 110.CrossRefGoogle ScholarPubMed
Pak, T., Luz, L.F.d.L., Tosco, T., Costa, G.S.R., Rosa, P.R.R. & Archilha, N.L. 2020 Pore-scale investigation of the use of reactive nanoparticles for in situ remediation of contaminated groundwater source. Proc. Natl Acad. Sci. USA 117 (24), 1336613373.CrossRefGoogle ScholarPubMed
Sacanna, S., Kegel, W. & Philipse, A. 2007 Thermodynamically stable pickering emulsions. Phys. Rev. Lett. 98 (15), 158301.CrossRefGoogle Scholar
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47 (3), 18151819.Google ScholarPubMed
Singh, K., Jung, M., Brinkmann, M. & Seemann, R. 2019 Capillary-dominated fluid displacement in porous media. Annu. Rev. Fluid Mech. 51 (1), 429449.CrossRefGoogle Scholar
Sweeney, J., Davis, T., Scriven, L. & Zasadzinski, J. 1993 Equilibrium thin films on rough surfaces. 1. Capillary and disjoining effects. Langmuir 9 (6), 15511555.CrossRefGoogle Scholar
Tan, H., Banerjee, A., Shi, N., Tang, X., Abdel-Fattah, A. & Squires Todd, M. 2021 A two-step strategy for delivering particles to targets hidden within microfabricated porous media. Sci. Adv. 7 (33), eabh0638.CrossRefGoogle ScholarPubMed
Tuller, M., Or, D. & Dudley, L.M. 1999 Adsorption and capillary condensation in porous media: liquid retention and interfacial configurations in angular pores. Water Resour. Res. 35 (7), 19491964.CrossRefGoogle Scholar
Wang, T., Si, Y., Dai, H., Li, C., Gao, C., Dong, Z. & Jiang, L. 2020 Apex structures enhance water drainage on leaves. Proc. Natl Acad. Sci. USA 117 (4), 18901894.CrossRefGoogle Scholar
Wasan, D.T. & Nikolov, A.D. 2003 Spreading of nanofluids on solids. Nature 423 (6936), 156159.CrossRefGoogle ScholarPubMed
Xie, C. & Balhoff, M.T. 2021 Lattice Boltzmann modeling of the apparent viscosity of thinning-elastic fluids in porous media. Trans. Porous Med. 137 (1), 6386.CrossRefGoogle Scholar
Xie, C., Lei, W. & Wang, M. 2018 Lattice Boltzmann model for three-phase viscoelastic fluid flow. Phys. Rev. E 97 (2), 023312.Google ScholarPubMed
Xu, K., Agrawal, D. & Darugar, Q. 2018 Hydrophilic nanoparticle-based enhanced oil recovery: microfluidic investigations on mechanisms. Energy Fuels 32 (11), 1124311252.CrossRefGoogle Scholar
Xu, K., Bonnecaze, R. & Balhoff, M. 2017 Egalitarianism among bubbles in porous media: an Ostwald ripening derived anticoarsening phenomenon. Phys. Rev. Lett. 119 (26), 264502.CrossRefGoogle ScholarPubMed
Yadav, A., Hinch, E. & Tirumkudulu, M.S. 2019 Capillary-induced motion of particles bridging interfaces of a free-standing thin liquid film. Phys. Rev. Lett. 122 (9), 098001.CrossRefGoogle ScholarPubMed
Yang, G., Chen, Y., Chen, S. & Wang, M. 2023 Implementation of a direct-addressing based lattice Boltzmann GPU solver for multiphase flow in porous media. Comput. Phys. Commun. 291, 108828.CrossRefGoogle Scholar
Yasuga, H. et al. 2021 Fluid interfacial energy drives the emergence of three-dimensional periodic structures in micropillar scaffolds. Nat. Phys. 17 (7), 794800.CrossRefGoogle Scholar
Zheng, J., Ju, Y. & Wang, M. 2018 Pore-scale modeling of spontaneous imbibition behavior in a complex shale porous structure by pseudopotential lattice Boltzmann method. J. Geophys. Res. Solid Earth 123 (11), 95869600.CrossRefGoogle Scholar
Zheng, J., Lei, W., Ju, Y. & Wang, M. 2021 Investigation of spontaneous imbibition behavior in a 3D pore space under reservoir condition by lattice Boltzmann method. J. Geophys. Res. Solid Earth 126 (6), e2021JB021987.CrossRefGoogle Scholar
Supplementary material: File

Lei et al. supplementary material 1

Lei et al. supplementary material
Download Lei et al. supplementary material 1(File)
File 30.1 KB
Supplementary material: File

Lei et al. supplementary material movie 2

Lei et al. supplementary material movie
Download Lei et al. supplementary material movie 2(File)
File 2.9 MB
Supplementary material: File

Lei et al. supplementary material movie 3

Lei et al. supplementary material movie
Download Lei et al. supplementary material movie 3(File)
File 1.3 MB
Supplementary material: File

Lei et al. supplementary material movie 4

Lei et al. supplementary material movie
Download Lei et al. supplementary material movie 4(File)
File 3.6 MB
Supplementary material: File

Lei et al. supplementary material movie 5

Lei et al. supplementary material movie
Download Lei et al. supplementary material movie 5(File)
File 1.9 MB
Supplementary material: File

Lei et al. supplementary material movie 6

Lei et al. supplementary material movie
Download Lei et al. supplementary material movie 6(File)
File 2.6 MB
Supplementary material: File

Lei et al. supplementary material movie 7

Lei et al. supplementary material movie
Download Lei et al. supplementary material movie 7(File)
File 1.5 MB
Supplementary material: File

Lei et al. supplementary material movie 8

Lei et al. supplementary material movie
Download Lei et al. supplementary material movie 8(File)
File 2.7 MB
Supplementary material: File

Lei et al. supplementary material movie 9

Lei et al. supplementary material movie
Download Lei et al. supplementary material movie 9(File)
File 1.2 MB
Supplementary material: File

Lei et al. supplementary material movie 10

Lei et al. supplementary material movie
Download Lei et al. supplementary material movie 10(File)
File 3.1 MB
Supplementary material: File

Lei et al. supplementary material movie 11

Lei et al. supplementary material movie
Download Lei et al. supplementary material movie 11(File)
File 1.4 MB
Supplementary material: File

Lei et al. supplementary material movie 12

Lei et al. supplementary material movie
Download Lei et al. supplementary material movie 12(File)
File 2.8 MB