Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T06:10:57.407Z Has data issue: false hasContentIssue false

A resonant test-field model of gravity waves

Published online by Cambridge University Press:  20 April 2006

Bruce J. West
Affiliation:
Center for Studies of Nonlinear Dynamics, La Jolla Institute, P.O. Box 1434 La Jolla, CA 92038

Abstract

In this paper we propose an ‘irreversible’ resonant test-field (RTF) model to describe the statistical fluctuations of gravity waves on deep water driven by a turbulent wind field. The non-resonant interactions in the gravity-wave Hamiltonian are replaced by a Markov process in the equation of motion for the resonantly interacting gravity waves, i.e. Hamilton's equations are replaced by a Langevin equation for the RTF waves. The RTF models the irreversible energy-transfer process by a Fokker-Planck equation for the phase-space probability density, the exact steady-state solution of which is determined to be non-Gaussian. An H-theorem for the RTF predicts the monotonic approach to the asymptotic steady state near which the transport properties of the field are studied. The steady-state energy-spectral density is calculated (in some approximation) to be k−4.

Type
Research Article
Copyright
© 1983 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alber, I. E. 1978 Proc. R. Soc. Lond. A363, 525.
Benney, D. J. 1962 J. Fluid Mech. 14, 577.
Benney, D. J. & Newell, A. C. 1967 J. Math & Phys. 46, 363.
Benney, D. J. & Saffman, P. G. 1966 Proc. R. Soc. Lond. A289, 301.
Broer, L. J. F. 1974 Appl. Sci. Res. 30, 430.
Grabert, H. & Weidlich, W. 1980 Phys. Rev. A21, 2147.
Hasselmann, K. 1962 J. Fluid Mech. 12, 481.
Hasselmann, K. 1963 J. Fluid Mech. 15, 273.
Hasselmann, K. 1967 Proc. R. Soc. Lond. A299, 94.
Kinsman, B. 1965 Wind Waves. Prentice-Hall.
Kitaigorodskii, S. A. 1970 Fizika Vzaimodestviya Atmoferi i Okeana Physics of Air-Sea Interaction. Leningrad: Gidromet. Iz datel stuo. [English Transl.: Israel Programme for Scientific Translation, 1973.]
Lax, M. 1966a Rev. Mod. Phys. 38, 359.
Lax, M. 1966b Rev. Mod. Phys. 38, 541.
Lindenberg, K., Shuler, K., Seshadri, V. & West, B. J. 1983 In Probabilistic Analysis and Related Topics (ed. A. T. Bharucha-Reid). Academic.
Longuet-Higgins, M. S. 1962 J. Fluid Mech. 12, 321.
Longuet-Higgins, M. S. 1976 Proc. R. Soc. Lond. A341, 311.
Milder, D. M. 1977 J. Fluid Mech. 83, 159.
Miles, J. 1957 J. Fluid Mech. 3, 185.
Miles, J. 1977 J. Fluid Mech. 83, 153.
Mitsuyasu, H. 1975 J. Phys. Oceanogr. 5, 750.
Monin, A. S., Kamenkovich, V. M. & Kort, V. G. 1974 Variability of the Ocean. Wiley-Interscience.
Moser, J. 1973 Stable and Random Motions in Dynamical Systems. Princeton University Press.
Newell, A. C. 1968 Rev. Geophys. 6, 1.
Pawula, R. F. 1967 Phys. Rev. 162, 186.
Phillips, O. M. 1957 J. Fluid Mech. 2, 417.
Phillips, O. M. 1960 J. Fluid Mech. 9, 193.
Phillips, O. M. 1977 Dynamics of the Upper Ocean, 2nd edn. Cambridge University Press.
Pomphrey, N., Meiss, J. D. & Watson, K. M. 1980 J. Geophys. Res. 85, 1085.
Valenzuela, G. R. & Laing, M. B. 1972 J. Fluid Mech. 54, 597.
Van Kampen, N. G. 1976 Phys. Rep. 24C, 173.
Watson, K. M. & West, B. J. 1975 J. Fluid Mech. 70, 815.
Weber, B. C. & Barrick, D. E. 1977a J. Phys. Oceanogr. 7, 3.
Weber, B. C. & Barrick, D. E. 1977b J. Phys. Oceanogr. 7, 11.
West, B. J. 1981a Deep Water Gravity Waves. Lecture Notes in Physics, vol. 146. Springer.
WEST, B. J. (ed.) 1981b Nonlinear Properties of Internal Waves. AIP Conf. Proc. no. 76.
West, B. J. 1982a Phys. Rev. A25, 1683.
West, B. J. 1982b J. Fluid Mech. 117, 187.
West, B. J. & Seshadri, V. 1981 J. Geophys. Res. 86, 4293.
Willebrand, J. 1975 J. Fluid Mech. 70, 113.
Zakharov, V. E. 1968 Zh. Prikl. Mekh. Tekh. Fiz. 9, 86. [English transl. in J. Appl. Mech. Tech. Phys. 2, 190.]