Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T05:15:52.641Z Has data issue: false hasContentIssue false

Reflexion of a weak shock wave with vibrational relaxation

Published online by Cambridge University Press:  29 March 2006

Ching-Mao Hung
Affiliation:
Cornell University, Ithaca, New York
Richard Seebass
Affiliation:
Cornell University, Ithaca, New York

Abstract

The structure of a shock wave in a vibrationally relaxing gas undergoing reflexion from a plane wall is examined. The shock wave is assumed to be weak, and departures from thermodynamic equilibrium are assumed small; both an adiabatic and an isothermal wall are considered. The flow field is divided into three regions: a far-field region, an interaction region, and, for the isothermal-wall case, a thermal boundary layer. Different asymptotic expansions are determined for the various regions through the method of matched asymptotic expansions. In the region far from the wall, a non-equilibrium Burgers equation governs the motion and the incident and the reflected shock wave structures. During reflexion, a non-equilibrium wave equation applies; its first-order terms are equivalent to an acoustic approximation. Heat conduction to the wall is modelled by an isothermal wall boundary condition which requires the introduction of a thermal boundary layer adjacent to the wall. This thermal boundary layer is thin and the adiabatic-wall result provides the outer solution for treating this layer. This thermal layer affects the structure of the reflected wave.

Type
Research Article
Copyright
© 1974 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baganoff, D. 1965 J. Fluid Mech. 23, 209.
Becker, E. 1970 Aeronautical J. 74, 736.
Bethe, H. A. & Teller, E. 1941 Aberdeen Proving Ground BRL Rep. X–117.
Blythe, P. A. 1969 J. Fluid Mech. 37, 31.
Brandon, H. J. 1969 Nonequilibrium flow fields behind reflected shock waves. Ph.D. thesis, Washington University.
Broer, L. J. F. 1951 Appl. Sci. Res. A2, 447.
Buggisch, H. 1969 Z. angew. Math. Mech. 49, 495.
Buggisch, H. 1970 Z. angew. Math. Mech. 50, T168.
Clarke, J. F. 1967 Proc. Roy. Soc. A299, 221.
Clarke, J. F. & McChesney, M. 1964 The Dynamics of Real Gases. Butterworths.
Freeman, N. C. 1958 J. Fluid Mech. 4, 407.
Glassman, I. 1966 Recent Advances in Aerothermochemistry, AGARD Conf. Proc. 12, vol. 2.
Goldsworthy, F. A. 1959 J. Fluid Mech. 5, 164.
Gunn, J. C. 1946 Aero. Res. Counc. R. & M. no. 2338.
Hanson, R. K. 1971a J. Fluid Mech. 45, 721.
Hanson, R. K. 1971b A.I.A.A.J. 9, 1811.
Johannesen, N. H., Bird, G. A. & Zienkiewicz, H. K. 1967 J. Fluid Mech. 30, 51.
Lesser, M. B. & Seebass, A. R. 1968 J. Fluid Mech. 31, 501.
Lighthill, M. J. 1956 Surveys in Mechanics (ed. G. K. Batchelor & R. Davis), pp. 250351. Cambridge University Press.
Ockendon, H. & Spence, D. A. 1969 J. Fluid Mech. 39, 329.
Presley, L. L. & Hanson, R. K. 1968 A.I.A.A.J. 7, 2267.
Spence, D. A. 1961 Proc. Roy. Soc. A264, 221.
Sturtevant, B. & Slachmuylders, E. 1964 Phys. Fluids, 7, 1201.
Van Dyke, M. D. 1964 Perturbation Methods in Fluid Mechanics. Academic.
Vincenti, W. G. & Kruger, C. H. 1965 Introduction to Physical Gas Dynamics. Wiley.