Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T22:46:00.275Z Has data issue: false hasContentIssue false

Receptivity of a swept-wing boundary layer to micron-sized discrete roughness elements

Published online by Cambridge University Press:  14 August 2014

Holger B. E. Kurz
Affiliation:
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Pfaffenwaldring 21, D-70550 Stuttgart, Germany
Markus J. Kloker*
Affiliation:
Institute of Aerodynamics and Gas Dynamics, University of Stuttgart, Pfaffenwaldring 21, D-70550 Stuttgart, Germany
*
Email address for correspondence: [email protected]

Abstract

The receptivity of a laminar swept-wing boundary layer to a spanwise array of circular roughness elements is investigated by means of direct numerical simulations (DNS). The initial amplitude of a steady crossflow mode generated by the shallow roughness elements does not vary strictly linearly with the roughness height, as often assumed. Rather, a fundamental, superlinear dependence of the receptivity amplitude on the roughness height is found. In order to account for shape effects, the roughness geometry is Fourier decomposed to its spanwise spectral content, and elements with a reduced spectrum are investigated. If only modes are present that synthesise a regular structure of alternating bumps and dimples of equal shape and size, the receptivity amplitude is strictly linear for each mode and nominal roughness heights up to at least 15 % of the local displacement thickness.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babucke, A.2009 Direct numerical simulation of noise-generation mechanisms in the mixing layer of a jet. PhD thesis, University of Stuttgart.Google Scholar
Bertolotti, F. P. 2000 Receptivity of three-dimensional boundary-layers to localised wall roughness and suction. Phys. Fluids 12 (7), 17991809.Google Scholar
Bodonyi, R. J., Welch, W. J. C., Duck, P. W. & Tadjfar, M. 1989 A numerical study of the interaction between unsteady free-stream disturbances and localised variations in surface geometry. J. Fluid Mech. 209, 285308.Google Scholar
Bogolepov, V. V. 1986 A general scheme for three-dimensional local flow regimes. PMTF Zh. Prikl. Mekh. Tekh. Fiz. 6, 8091.Google Scholar
Borodulin, V. I., Ivanov, A. V., Kachanov, Y. S. & Roschektaev, A. P. 2013 Receptivity coefficients at excitation of cross-flow waves by free-stream vortices in the presence of surface roughness. J. Fluid Mech. 716, 487527.Google Scholar
Choudhari, M. & Duck, P. W.1996 Nonlinear excitation of inviscid stationary vortex instabilities in a boundary-layer flow. In IUTAM Symposium on Nonlinear Instability and Transition in Three-Dimensional Boundary Layers, pp. 409–422.Google Scholar
Choudhari, M. & Streett, C. L.1990 Boundary layer receptivity phenomena in three-dimensional and high-speed boundary layers. AIAA Paper 90-5258.CrossRefGoogle Scholar
Colonius, T., Lele, S. K. & Moin, P. 1993 Boundary conditions for direct computation of aerodynamic sound generation. AIAA J. 31 (9), 15741582.Google Scholar
Friederich, T. A. & Kloker, M. J.2011 Control of crossflow-vortex induced transition: DNS of pinpoint suction. AIAA Paper 2011-3884.Google Scholar
Friederich, T. A. & Kloker, M. J. 2012 Control of the secondary cross-flow instability using localised suction. J. Fluid Mech. 706, 470495.Google Scholar
Gaitonde, D. V. & Visbal, M. R.1998 High-order schemes for Navier–Stokes equations: algorithm and implementation into FDL3DI. Tech Rep. DTIC Document.CrossRefGoogle Scholar
Gaponenko, V. R., Ivanov, A. V., Kachanov, Y. S. & Crouch, J. D. 2002 Swept-wing boundary-layer receptivity to surface non-uniformities. J. Fluid Mech. 461, 93126.Google Scholar
Giles, M. B. 1990 Non-reflecting boundary conditions for Euler equation calculations. AIAA J. 28 (12), 20502058.Google Scholar
Hill, D. C. 1995 Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech. 292, 183204.CrossRefGoogle Scholar
Hunt, Lauren. E. & Saric, William. S.2011 Boundary-layer receptivity of three-dimensional roughness arrays on a swept-wing. AIAA Paper 2011-3881.Google Scholar
Keller, M. A. & Kloker, M. J.2013 DNS of effusion cooling in a supersonic boundary-layer flow: influence of turbulence. AIAA Paper 2013-2897.Google Scholar
Kurian, T., Fransson, J. H. M. & Alfredsson, P. H. 2011 Boundary layer receptivity to free-stream turbulence and surface roughness over a swept flat plate. Phys. Fluids 23 (3), 034107.CrossRefGoogle Scholar
Kurz, H. B. E. & Kloker, M. J. 2014 Effects of a discrete medium-sized roughness in a laminar swept-wing boundary layer. In New Results in Numerical and Experimental Fluid Dynamics IX (ed. Dillmann, A.), Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 124, pp. 18. Springer.Google Scholar
Lipatov, I. I. & Vinogradov, I. V. 2000 Three-dimensional flow near surface distortions for the compensation regime. Phil. Trans. R. Soc. Lond. 358 (1777), 31433153.Google Scholar
Luchini, P. 2013 Linearised no-slip boundary conditions at a rough surface. J. Fluid Mech. 737, 349367.CrossRefGoogle Scholar
Messing, R. & Kloker, M. J. 2010 Investigation of suction for laminar flow control of three-dimensional boundary layers. J. Fluid Mech. 658, 117147.Google Scholar
Saric, W. S., Carrillo, R. B. Jr & Reibert, M. S.1998 Leading-edge roughness as a transition control mechanism. AIAA Paper 98-0781.Google Scholar
Schmidt, O. T. & Rist, U. 2014 Viscid-inviscid pseudo-resonance in streamwise corner flow. J. Fluid Mech. 743, 327357.Google Scholar
Schwamborn, D., Gerhold, T. & Heinrich, R. 2006 The DLR TAU-code: recent applications in research and industry. In European Conference on Computational Fluid Dynamics, ECCOMAS CFD, TU Delft, The Netherlands (ed. Wesseling, P., Oñate, E. & Périaux, J.).Google Scholar
Smith, F. T. 1991 Steady and unsteady 3-D interactive boundary layers. Comput. Fluids 20 (3), 243268.Google Scholar
Smith, F. T., Brighton, P. W. M., Jackson, P. S. & Hunt, J. C. R. 1981 On boundary-layer flow past two-dimensional obstacles. J. Fluid Mech. 113, 123152.Google Scholar
Tempelmann, D., Schrader, L.-U., Hanifi, A., Brandt, L. & Henningson, D. S. 2012 Swept wing boundary-layer receptivity to localised surface roughness. J. Fluid Mech. 711, 516544.Google Scholar
Wassermann, P. & Kloker, M. 2002 Mechanisms and passive control of crossflow-vortex-induced transition in a three-dimensional boundary layer. J. Fluid Mech. 456, 4984.Google Scholar