Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T04:59:13.171Z Has data issue: false hasContentIssue false

Reactive-infiltration instabilities in rocks. Fracture dissolution

Published online by Cambridge University Press:  28 May 2012

Piotr Szymczak*
Affiliation:
Institute of Theoretical Physics, Faculty of Physics, University of Warsaw, Hoża 69, 00-618, Warsaw, Poland
Anthony J. C. Ladd
Affiliation:
Chemical Engineering Department, University of Florida, Gainesville, FL 32611-6005, USA
*
Email address for correspondence: [email protected]

Abstract

A reactive fluid dissolving the surface of a uniform fracture will trigger an instability in the dissolution front, leading to spontaneous formation of pronounced well-spaced channels in the surrounding rock matrix. Although the underlying mechanism is similar to the wormhole instability in porous rocks there are significant differences in the physics, due to the absence of a steadily propagating reaction front. In previous work we have described the geophysical implications of this instability in regard to the formation of long conduits in soluble rocks. Here we describe a more general linear stability analysis, including axial diffusion, transport-limited dissolution, nonlinear kinetics, and a finite-length system.

Type
Papers
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Balakotaiah, V. & Ratnakar, R. R. 2004 Hyperbolic averaged models for describing dispersion effects in chromatographs and reactors. Korean J. Chem. Engng 21, 318328.CrossRefGoogle Scholar
2. Balakotaiah, V. & Ratnakar, R. R. 2010 On the use of transfer and dispersion coefficient concepts in low-dimensional diffusion–convection–reaction models. Chem. Engng Res. Des. 88 (3A), 342361.CrossRefGoogle Scholar
3. Berkowitz, B. 2002 Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25, 861884.CrossRefGoogle Scholar
4. Bird, R. B., Stewart, W. E. & Lightfoot, E. N. 2001 Transport Phenomena. Wiley.Google Scholar
5. Boyd, J. P. 1987 Orthogonal rational functions on a semi-infinite interval. J. Comput. Phys. 70, 63.CrossRefGoogle Scholar
6. Boyd, J. P. 2001 Chebyshev and Fourier Spectral Methods. Dover.Google Scholar
7. Detwiler, R. L., Glass, R. J. & Bourcier, W. L. 2003 Experimental observations of fracture dissolution: the role of Péclet number in evolving aperture variability. Geophys. Res. Lett. 30, 1648.CrossRefGoogle Scholar
8. Detwiler, R. L. & Rajaram, H. 2007 Predicting dissolution patterns in variable aperture fractures: evaluation of an enhanced depth-averaged computational model. Water Resour. Res. 43, W04403.CrossRefGoogle Scholar
9. Dijk, P. & Berkowitz, B. 1998 Precipitation and dissolution of reactive solutes in fractures. Water Resour. Res. 34, 457470.CrossRefGoogle Scholar
10. Dreybrodt, W. 1990 The role of dissolution kinetics in the development of karst aquifers in limestone: a model simulation of karst evolution. J. Geol. 98, 639655.CrossRefGoogle Scholar
11. Dreybrodt, W. 1996 Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models. Water Resour. Res. 32, 29232935.CrossRefGoogle Scholar
12. Durham, W. B., Bourcier, W. L. & Burton, E. A. 2001 Direct observation of reactive flow in a single fracture. Water Resour. Res. 37, 112.CrossRefGoogle Scholar
13. Ebadian, M. A. & Dong, Z. F. 1998 Forced convection, internal flow in ducts. In Handbook of Heat Transfer (ed. Rohsenow, W. M., Hartnett, J. P. & Cho, Y. I. ). McGraw-Hill.Google Scholar
14. Economides, M. J. & Nolte, K. G. 2000 Reservoir Stimulation. Wiley.Google Scholar
15. Farrell, B. F. & Ioannou, P. J. 1996 Generalized stability theory. Part II. Nonautonomous operators. J. Atmos. Sci. 53, 20412053.2.0.CO;2>CrossRefGoogle Scholar
16. Fredd, C. N. & Fogler, H. S. 1998 Influence of transport and reaction on wormhole formation in porous media. AIChE J. 44, 19331949.CrossRefGoogle Scholar
17. Gouze, P., Noiriel, C., Bruderer, C. & Loggia, D. 2003 X-ray tomography characterization of fracture surfaces during dissolution. Geophys. Res. Lett. 30, 1267.CrossRefGoogle Scholar
18. Gupta, N. & Balakotaiah, V. 2001 Heat and mass transfer coefficients in catalytic monoliths. Chem. Engng Sci. 56 (16), 47714786.CrossRefGoogle Scholar
19. Hanna, R. B. & Rajaram, H. 1998 Influence of aperture variability on dissolutional growth of fissures in karst formations. Water Resour. Res. 34, 28432853.CrossRefGoogle Scholar
20. Hayes, R. E. & Kolaczkowski, S. T. 1994 Mass and heat transfer effects in catalytic monolith reactors. Chem. Engng Sci. 49 (21), 35873599.CrossRefGoogle Scholar
21. Jeschke, A. A., Vosbeck, K. & Dreybrodt, W. 2001 Surface controlled dissolution rates of gypsum in aqueous solutions exhibit nonlinear dissolution kinetics. Geochimi. Cosmochim. Acta 65, 2734.CrossRefGoogle Scholar
22. Laubach, S. E., Eichhubl, P., Hilgers, C. & Lander, R. H. 2010 Structural diagenesis. J. Struct. Geol. 32, 18661872.CrossRefGoogle Scholar
23. Monagan, M. B., Geddes, K. O., Heal, K. M., Labahn, G., Vorkoetter, S. M., McCarron, J. & DeMarco, P. 2005 Maple 10 Programming Guide . Maplesoft.Google Scholar
24. Motyka, I. & Wilk, Z. 1984 Hydraulic structure of karst-fissured Triassic rocks in the vicinity of Olkusz (Poland). Kras i Speleologia 14, 1124.Google Scholar
25. Olver, F. W. J., Lozier, D. W., Boisvert, R. F. & Clark, C. W.  (Eds) 2010 NIST Handbook of Mathematical Functions. Cambridge University Press.Google Scholar
26. Oron, A. P. & Berkowitz, B. 1998 Flow in rock fractures: the local cubic law assumption reexamined. Water Resour. Res 34, 28112825.CrossRefGoogle Scholar
27. Ortoleva, P. J. 1994 Geochemical Self-organization. Oxford University Press.CrossRefGoogle Scholar
28. Paillet, F. L., Hess, A. E., Cheng, C. H. & Harding, E. 1987 Characterization of fracture permeability with high-resolution vertical flow measurements during borehole pumping. Ground Water 25, 2840.CrossRefGoogle Scholar
29. Palmer, A. N. 1991 Origin and morphology of limestone caves. Geol. Soc. Am. Bull. 103, 121.2.3.CO;2>CrossRefGoogle Scholar
30. Plummer, L. N., Wigley, T. L. M. & Parkhurst, D. L. 1978 The kinetics of calcite dissolution in -water systems at to and 0.0 to 1.0 atm of . Am. J. Sci. 278, 179216.CrossRefGoogle Scholar
31. Pruess, K. 2008 On fluid flow and heat transfer behaviour in the subsurface, following leakage from a geologic storage reservoir. Environ. Geol. 54, 16771686.CrossRefGoogle Scholar
32. Rimstidt, J. D. & Barnes, H. L. 1980 The kinetics of silica-water reactions. Geochim. Cosmochim. Acta 44, 16831699.CrossRefGoogle Scholar
33. Romanov, D., Gabrovs˘ek, F. & Dreybrodt, W. 2003 Dam sites in soluble rocks: a model of increasing leakage by dissolutional widening of fractures beneath a dam. Engng Geol. 70, 129145.CrossRefGoogle Scholar
34. Szymczak, P. & Ladd, A. J. C. 2006 A network model of channel competition in fracture dissolution. Geophys. Res. Lett. 33, L05401.CrossRefGoogle Scholar
35. Szymczak, P. & Ladd, A. J. C. 2011a The initial stages of cave formation: beyond the one-dimensional paradigm. Earth Planet. Sci. Lett. 301, 424432.CrossRefGoogle Scholar
36. Szymczak, P. & Ladd, A. J. C. 2011b Instabilities in the dissolution of a porous matrix. Geophys. Res. Lett. 38, L07403.CrossRefGoogle Scholar
37. Tan, C. T. & Homsy, G. M. 1986 Stability of miscible displacements in porous media: rectilinear flow. Phys. Fluids 29, 35493556.CrossRefGoogle Scholar
38. Wolfram Research, Inc. 2008 Mathematica Edition: Version 7.0. Wolfram Research, Inc., Champaign.Google Scholar
Supplementary material: File

Szymzak and Ladd supplementary material

Text documents

Download Szymzak and Ladd supplementary material(File)
File 44.6 KB