Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-17T09:19:13.320Z Has data issue: false hasContentIssue false

Production of monodisperse microbubbles avoiding microfluidics

Published online by Cambridge University Press:  03 May 2018

Enrique S. Quintero
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingenería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092, Sevilla, Spain
A. Evangelio
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingenería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092, Sevilla, Spain
J. M. Gordillo*
Affiliation:
Área de Mecánica de Fluidos, Departamento de Ingenería Aeroespacial y Mecánica de Fluidos, Universidad de Sevilla, Avenida de los Descubrimientos s/n 41092, Sevilla, Spain
*
Email address for correspondence: [email protected]

Abstract

Here we report the production of monodisperse microbubbles by taking advantage of the large values of both the pressure gradients and of the local velocities existing at the leading edge of airfoils in relative motion with a liquid. It is shown here that the scaling laws for the bubbling frequencies and the bubble diameters are identical to those found in microfluidics. Therefore, the metre-sized geometry presented here is a feasible candidate to circumvent the inherent problems of using micron-sized geometries in real applications – namely, wettability, the low productivity and the clogging of the microchannels by particles or other impurities.

Type
JFM Rapids
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbot, I. H. & Von Doenhoff, A. E. 1959 Theory of Wing Sections. Including a Summary of Airfoil Data. Dover.Google Scholar
Campo-Cortés, F., Riboux, G. & Gordillo, J. M. 2016 The effect of contact line pinning favors the mass production of monodisperse microbubbles. Microfluid. Nanofluid. 20, 21.Google Scholar
Eggers, J. & Villermaux, E. 2008 Physics of liquid jets. Rep. Prog. Phys. 71 (3), 036601.CrossRefGoogle Scholar
Evangelio, A., Campo-Cortés, F. & Gordillo, J. M. 2015 Pressure gradient induced generation of microbubbles. J. Fluid Mech. 778, 653668.Google Scholar
Ferrara, K., Pollard, R. & Borden, M. 2007 Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Engng 9, 415447.CrossRefGoogle ScholarPubMed
Fu, T. & Youguang, M. 2015 Bubble formation and breakup dynamics in microfluidic devices: a review. Chem. Engng Sci. 135, 343372.Google Scholar
Gañán-Calvo, A. M. & Gordillo, J. M. 2001 Perfectly monodisperse microbubbling by capillary flow focusing. Phys. Rev. Lett. 87, 274501.Google Scholar
Garcia-Ochoa, F. & Gomez, E. 2009 Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol. Adv. 27 (2), 153176.Google Scholar
Garstecki, P., Gitlin, I., Diluzio, W., Whitesides, G. M., Kumacheva, E. & Stone, H. A. 2004 Formation of monodisperse bubbles in a microfluidic flow-focusing device. Appl. Phys. Lett. 85, 26492651.Google Scholar
Gordillo, J. M., Sevilla, A. & Martínez-Bazán, C. 2007 Bubbling in a co-flow at high Reynolds numbers. Phys. Fluids 19 (7), 118.Google Scholar
Hettiarachchi, K., Talu, E., Longo, M. L., Dayton, P. A. & Lee, A. P. 2007 On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Lab on a Chip 7, 463468.CrossRefGoogle ScholarPubMed
Oguz, H. N. & Prosperetti, A. 1993 Dynamics of bubble-growth and detachment from a needle. J. Fluid Mech. 257, 111145.Google Scholar
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. CRC Press.Google Scholar
Rodríguez-Rodríguez, J., Sevilla, A., Martínez-Bazán, C. & Gordillo, J. M. 2015 Generation of microbubbles with applications to industry and medicine. Annu. Rev. Fluid Mech. 47 (September), 405429.Google Scholar
Rosso, D., Larson, L. E. & Stenstrom, M. K. 2008 Aeration of large-scale municipal wastewater treatment plants: state of the art. Water Sci. Technol. 57 (7), 973978.CrossRefGoogle ScholarPubMed
Shirota, M., Sanada, T., Sato, A. & Watanabe, M. 2008 Formation of a submillimeter bubble from an orifice using pulsed acoustic pressure waves in gas phase. Phys. Fluids 20 (4), 043301.Google Scholar
Villermaux, E. 2007 Fragmentation. Annu. Rev. Fluid Mech. 39 (1), 419446.Google Scholar
Yoshizawa, S., Ikeda, T., Ito, A., Ota, R., Takagi, S. & Matsumoto, Y. 2009 High intensity focused ultrasound lithotripsy with cavitating microbubbles. Med. Biol. Engng Comput. 47 (8), 851860.Google Scholar
Zimmerman, W. B., Zandi, M., Hemaka Bandulasena, H. C., Tesa, V., James Gilmour, D. & Ying, K. 2011 Design of an airlift loop bioreactor and pilot scales studies with fluidic oscillator induced microbubbles for growth of a microalgae Dunaliella salina . Appl. Energy 88 (10), 33573369.Google Scholar