Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T20:56:14.290Z Has data issue: false hasContentIssue false

Precession-driven flows in stress-free ellipsoids

Published online by Cambridge University Press:  23 December 2022

Jérémie Vidal*
Affiliation:
Université Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France
David Cébron
Affiliation:
Université Grenoble Alpes, CNRS, ISTerre, 38000 Grenoble, France
*
Email address for correspondence: [email protected]

Abstract

Motivated by modelling rotating turbulence in planetary fluid layers, we investigate precession-driven flows in ellipsoids subject to stress-free boundary conditions (SF-BC). The SF-BC could indeed unlock numerical constraints associated with the no-slip boundary conditions (NS-BC), but are also relevant for some astrophysical applications. Although SF-BC have been employed in the pioneering work of Lorenzani & Tilgner (J. Fluid Mech., vol. 492, 2003, pp. 363–379), they have scarcely been used due to the discovery of some specific mathematical issues associated with angular momentum conservation. We revisit the problem using asymptotic analysis in the low-viscosity regime, which is validated with numerical simulations. First, we extend the reduced model of uniform-vorticity flows in ellipsoids to account for SF-BC. We show that the long-term evolution of angular momentum is affected by viscosity in triaxial geometries, but also in axisymmetric ellipsoids when the mean rotation axis of the fluid is not the symmetry axis. In a regime relevant to planets, we analytically obtain the primary forced flow in triaxial geometries, which exhibits a second inviscid resonance. Then, we investigate the bulk instabilities existing in precessing ellipsoids. We show that using SF-BC would be useful to explore the non-viscous instabilities (e.g. Kerswell, Geophys. Astrophys. Fluid Dyn., vol. 72, 1993, pp. 107–144), which are presumably relevant for planetary applications but are often hampered in experiments or simulations with NS-BC.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Backus, G. & Rieutord, M. 2017 Completeness of inertial modes of an incompressible inviscid fluid in a corotating ellipsoid. Phys. Rev. E 95 (5), 053116.CrossRefGoogle Scholar
Barker, A.J. 2016 a Non-linear tides in a homogeneous rotating planet or star: global simulations of the elliptical instability. Mon. Not. R. Astron. Soc. 459 (1), 939956.CrossRefGoogle Scholar
Barker, A.J. 2016 b On turbulence driven by axial precession and tidal evolution of the spin-orbit angle of close-in giant planets. Mon. Not. R. Astron. Soc. 460 (3), 23392350.CrossRefGoogle Scholar
Barker, A.J. & Lithwick, Y.M. 2013 Non-linear evolution of the tidal elliptical instability in gaseous planets and stars. Mon. Not. R. Astron. Soc. 435 (4), 36143626.CrossRefGoogle Scholar
Brunet, M., Gallet, B. & Cortet, P.-P. 2020 Shortcut to geostrophy in wave-driven rotating turbulence: the quartetic instability. Phys. Rev. Lett. 124 (12), 124501.CrossRefGoogle ScholarPubMed
Buffett, B.A. 2021 Conditions for turbulent Ekman layers in precessionally driven flow. Geophys. J. Intl 226 (1), 5665.CrossRefGoogle Scholar
Burmann, F. & Noir, J. 2022 Experimental study of the flows in a non-axisymmetric ellipsoid under precession. J. Fluid Mech. 932, A24.CrossRefGoogle Scholar
Busse, F.H. 1968 Steady fluid flow in a precessing spheroidal shell. J. Fluid Mech. 33 (4), 739751.CrossRefGoogle Scholar
Cébron, D. 2015 Bistable flows in precessing spheroids. Fluid Dyn. Res. 47 (2), 025504.CrossRefGoogle Scholar
Cébron, D., Laguerre, R., Noir, J. & Schaeffer, N. 2019 Precessing spherical shells: flows, dissipation, dynamo and the lunar core. Geophys. J. Intl 219 (Supplement 1), S34S57.CrossRefGoogle Scholar
Cébron, D., Le Bars, M., Le Gal, P., Moutou, C., Leconte, J. & Sauret, A. 2013 Elliptical instability in hot Jupiter systems. Icarus 226 (2), 16421653.CrossRefGoogle Scholar
Cébron, D., Le Bars, M. & Meunier, P. 2010 Tilt-over mode in a precessing triaxial ellipsoid. Phys. Fluids 22 (11), 116601.CrossRefGoogle Scholar
Cébron, D., Vidal, J., Schaeffer, N., Borderies, A. & Sauret, A. 2021 Mean zonal flows induced by weak mechanical forcings in rotating spheroids. J. Fluid Mech. 916, A39.CrossRefGoogle Scholar
Chandrasekhar, S. 1969 Ellipsoidal Figures of Equilibrium. Dover Publications.Google Scholar
Chen, L., Herreman, W., Li, K., Livermore, P.W., Luo, J.W. & Jackson, A. 2018 The optimal kinematic dynamo driven by steady flows in a sphere. J. Fluid Mech. 839, 132.CrossRefGoogle Scholar
Clausen, N. & Tilgner, A. 2014 Elliptical instability of compressible flow in ellipsoids. Astron. Astrophys. 562, A25.CrossRefGoogle Scholar
Dwyer, C.A., Stevenson, D.J. & Nimmo, F. 2011 A long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479 (7372), 212214.CrossRefGoogle ScholarPubMed
Gerick, F., Jault, D., Noir, J. & Vidal, J. 2020 Pressure torque of torsional Alfvén modes acting on an ellipsoidal mantle. Geophys. J. Intl 222 (1), 338351.CrossRefGoogle Scholar
Grannan, A.M., Favier, B., Le Bars, M. & Aurnou, J.M. 2017 Tidally forced turbulence in planetary interiors. Geophys. J. Intl 208 (3), 16901703.Google Scholar
Greenspan, H.P. 1968 The Theory of Rotating Fluids. Cambridge University Press.Google Scholar
Greenspan, H.P. 1969 On the non-linear interaction of inertial modes. J. Fluid Mech. 36 (2), 257264.CrossRefGoogle Scholar
Guermond, J.-L., Léorat, J., Luddens, F. & Nore, C. 2013 Remarks on the stability of the Navier–Stokes equations supplemented with stress boundary conditions. Eur. J. Mech. (B/Fluids) 39, 110.CrossRefGoogle Scholar
Holdenried-Chernoff, D., Chen, L. & Jackson, A. 2019 A trio of simple optimized axisymmetric kinematic dynamos in a sphere. Proc. R. Soc. A 475 (2229), 20190308.CrossRefGoogle Scholar
Horimoto, Y., Katayama, A. & Goto, S. 2020 Conical shear-driven parametric instability of steady flow in precessing spheroids. Phys. Rev. Fluids 5 (6), 063901.CrossRefGoogle Scholar
Ivers, D. 2017 Enumeration, orthogonality and completeness of the incompressible Coriolis modes in a tri-axial ellipsoid. Geophys. Astrophys. Fluid Dyn. 111 (5), 333354.CrossRefGoogle Scholar
Jones, C.A., Boronski, P., Brun, A.S., Glatzmaier, G.A., Gastine, T., Miesch, M.S. & Wicht, J. 2011 Anelastic convection-driven dynamo benchmarks. Icarus 216 (1), 120135.CrossRefGoogle Scholar
Kerswell, R.R. 1993 The instability of precessing flow. Geophys. Astrophys. Fluid Dyn. 72 (1-4), 107144.CrossRefGoogle Scholar
Kerswell, R.R. 1999 Secondary instabilities in rapidly rotating fluids: inertial wave breakdown. J. Fluid Mech. 382, 283306.CrossRefGoogle Scholar
Kerswell, R.R. 2002 Elliptical instability. Annu. Rev. Fluid Mch. 34 (1), 83113.CrossRefGoogle Scholar
Kida, S. 2020 Steady flow in a rapidly rotating spheroid with weak precession: I. Fluid Dyn. Res. 52 (1), 015513.CrossRefGoogle Scholar
Landeau, M., Fournier, A., Nataf, H.-C., Cébron, D. & Schaeffer, N. 2022 Sustaining Earth's magnetic dynamo. Nat. Rev. Earth Environ. 3 (4), 255269.CrossRefGoogle Scholar
Le Bars, M., Cébron, D. & Le Gal, P. 2015 Flows driven by libration, precession, and tides. Annu. Rev. Fluid Mech. 47, 163193.CrossRefGoogle Scholar
Le Bars, M., Wieczorek, M.A., Karatekin, Ö., Cébron, D. & Laneuville, M. 2011 An impact-driven dynamo for the early Moon. Nature 479 (7372), 215218.CrossRefGoogle ScholarPubMed
Le Reun, T., Favier, B. & Le Bars, M. 2019 Experimental study of the nonlinear saturation of the elliptical instability: inertial wave turbulence versus geostrophic turbulence. J. Fluid Mech. 879, 296326.CrossRefGoogle Scholar
Le Reun, T., Gallet, B., Favier, B. & Le Bars, M. 2020 Near-resonant instability of geostrophic modes: beyond Greenspan's theorem. J. Fluid Mech. 900, R2.CrossRefGoogle Scholar
Lebovitz, N.R. 1989 The stability equations for rotating, inviscid fluids: Galerkin methods and orthogonal bases. Geophys. Astrophys. Fluid Dyn. 46 (4), 221243.CrossRefGoogle Scholar
Liao, X., Zhang, K. & Earnshaw, P. 2001 On the viscous damping of inertial oscillation in planetary fluid interiors. Phys. Earth Planet. Inter. 128 (1-4), 125136.CrossRefGoogle Scholar
Lin, Y., Marti, P. & Noir, J. 2015 Shear-driven parametric instability in a precessing sphere. Phys. Fluids 27 (4), 046601.CrossRefGoogle Scholar
Livermore, P.W., Bailey, L.M. & Hollerbach, R. 2016 A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell. Sci. Rep. 6 (1), 22812.CrossRefGoogle Scholar
Lorenzani, S. & Tilgner, A. 2001 Fluid instabilities in precessing spheroidal cavities. J. Fluid Mech. 447, 111128.CrossRefGoogle Scholar
Lorenzani, S. & Tilgner, A. 2003 Inertial instabilities of fluid flow in precessing spheroidal shells. J. Fluid Mech. 492, 363379.CrossRefGoogle Scholar
Maffei, S., Jackson, A. & Livermore, P.W. 2017 Characterization of columnar inertial modes in rapidly rotating spheres and spheroids. Proc. R. Soc. A 473 (2204), 20170181.CrossRefGoogle ScholarPubMed
Malkus, W.V.R. 1968 Precession of the earth as the cause of geomagnetism. Science 160 (3825), 259264.CrossRefGoogle ScholarPubMed
Mason, R.M. & Kerswell, R.R. 2002 Chaotic dynamics in a strained rotating flow: a precessing plane fluid layer. J. Fluid Mech. 471, 71106.CrossRefGoogle Scholar
Mathews, P.M., Buffett, B.A., Herring, T.A. & Shapiro, I.I. 1991 Forced nutations of the earth: influence of inner core dynamics: 1. Theory. J. Geophys. Res. Solid Earth 96 (B5), 82198242.CrossRefGoogle Scholar
Mathews, P.M., Herring, T.A. & Buffett, B.A. 2002 Modeling of nutation and precession: new nutation series for nonrigid earth and insights into the Earth's interior. J. Geophys. Res. Solid Earth 107 (B4), ETG–3.CrossRefGoogle Scholar
Mighani, S., Wang, H., Shuster, D.L., Borlina, C.S., Nichols, C.I.O. & Weiss, B.P. 2020 The end of the lunar dynamo. Sci. Adv. 6 (1), eaax0883.CrossRefGoogle ScholarPubMed
Nobili, C., Meunier, P., Favier, B. & Le Bars, M. 2021 Hysteresis and instabilities in a spheroid in precession near the resonance with the tilt-over mode. J. Fluid Mech. 909, A17.CrossRefGoogle Scholar
Noir, J., Cardin, P., Jault, D. & Masson, J.-P. 2003 Experimental evidence of non-linear resonance effects between retrograde precession and the tilt-over mode within a spheroid. Geophys. J. Intl 154 (2), 407416.CrossRefGoogle Scholar
Noir, J. & Cébron, D. 2013 Precession-driven flows in non-axisymmetric ellipsoids. J. Fluid Mech. 737, 412439.CrossRefGoogle Scholar
Ohta, K. & Hirose, K. 2021 The thermal conductivity of the Earth's core and implications for its thermal and compositional evolution. Nat. Sci. Rev. 8 (4), nwaa303.CrossRefGoogle ScholarPubMed
Poincaré, H. 1910 Sur la précession des corps déformables. Bull. Astro. 27, 321356.CrossRefGoogle Scholar
Reddy, K.S., Favier, B. & Le Bars, M. 2018 Turbulent kinematic dynamos in ellipsoids driven by mechanical forcing. Geophys. Res. Lett. 45 (4), 17411750.CrossRefGoogle Scholar
Rieutord, M. 1992 Ekman circulation and the synchronization of binary stars. Astron. Astrophys. 259, 581584.Google Scholar
Rieutord, M. & Zahn, J.-P. 1997 Ekman pumping and tidal dissipation in close binaries: a refutation of Tassoul's mechanism. Astrophys. J. 474 (2), 760.CrossRefGoogle Scholar
Roberts, P.H. & Aurnou, J.M. 2012 On the theory of core-mantle coupling. Geophys. Astrophys. Fluid Dyn. 106 (2), 157230.CrossRefGoogle Scholar
Rochester, M.G. 1962 Geomagnetic core-mantle coupling. J. Geophys. Res. 67 (12), 48334836.CrossRefGoogle Scholar
Rochester, M.G. 1976 The secular decrease of obliquity due to dissipative core–mantle coupling. Geophys. J. Intl 46 (1), 109126.CrossRefGoogle Scholar
Sobouti, Y. 1981 The potentials for the g-, p- and the toroidal modes of self-gravitating fluids. Astron. Astrophys. 100, 319322.Google Scholar
Tilgner, A. 1999 Non-axisymmetric shear layers in precessing fluid ellipsoidal shells. Geophys. J. Intl 136 (3), 629636.CrossRefGoogle Scholar
Touma, J. & Wisdom, J. 1994 Evolution of the earth–moon system. Astron. J. 108 (5), 19431961.CrossRefGoogle Scholar
Vantieghem, S. 2014 Inertial modes in a rotating triaxial ellipsoid. Proc. R. Soc. A 470 (2168), 20140093.CrossRefGoogle Scholar
Vantieghem, S., Cébron, D. & Noir, J. 2015 Latitudinal libration driven flows in triaxial ellipsoids. J. Fluid Mech. 771, 193228.CrossRefGoogle Scholar
Vidal, J. & Cébron, D. 2017 Inviscid instabilities in rotating ellipsoids on eccentric Kepler orbits. J. Fluid Mech. 833, 469511.CrossRefGoogle Scholar
Vidal, J. & Cébron, D. 2020 Acoustic and inertial modes in planetary-like rotating ellipsoids. Proc. R. Soc. A 476 (2239), 20200131.CrossRefGoogle ScholarPubMed
Vidal, J. & Cébron, D. 2021 a Acoustic modes of rapidly rotating ellipsoids subject to centrifugal gravity. J. Acoust. Soc. Am. 150 (2), 14671478.CrossRefGoogle ScholarPubMed
Vidal, J. & Cébron, D. 2021 b Kinematic dynamos in triaxial ellipsoids. Proc. R. Soc. A 477 (2252), 20210252.CrossRefGoogle Scholar
Vidal, J., Cébron, D., Schaeffer, N. & Hollerbach, R. 2018 Magnetic fields driven by tidal mixing in radiative stars. Mon. Not. R. Astron. Soc. 475 (4), 45794594.CrossRefGoogle Scholar
Vidal, J., Su, S. & Cébron, D. 2020 Compressible fluid modes in rigid ellipsoids: towards modal acoustic velocimetry. J. Fluid Mech. 885, A39.CrossRefGoogle Scholar
Viswanathan, V., Rambaux, N., Fienga, A., Laskar, J. & Gastineau, M. 2019 Observational constraint on the radius and oblateness of the lunar core-mantle boundary. Geophys. Res. Lett. 46 (13), 72957303.CrossRefGoogle Scholar
Vormann, J. & Hansen, U. 2018 Numerical simulations of bistable flows in precessing spheroidal shells. Geophys. J. Intl 213 (2), 786797.CrossRefGoogle Scholar
Wicht, J. & Tilgner, A. 2010 Theory and modeling of planetary dynamos. Space Sci. Rev. 152 (1), 501542.CrossRefGoogle Scholar
Williams, J.G., Boggs, D.H., Yoder, C.F., Ratcliff, J.T. & Dickey, J.O. 2001 Lunar rotational dissipation in solid body and molten core. J. Geophys. Res. Planets 106 (E11), 2793327968.CrossRefGoogle Scholar
Wu, C.-C. & Roberts, P.H. 2009 On a dynamo driven by topographic precession. Geophys. Astrophys. Fluid Dyn. 103 (6), 467501.CrossRefGoogle Scholar
Wu, C.-C. & Roberts, P.H. 2011 High order instabilities of the Poincaré solution for precessionally driven flow. Geophys. Astrophys. Fluid Dyn. 105 (2-3), 287303.CrossRefGoogle Scholar
Zhang, K., Chan, K.H. & Liao, X. 2012 Asymptotic theory of resonant flow in a spheroidal cavity driven by latitudinal libration. J. Fluid Mech. 692, 420445.CrossRefGoogle Scholar
Zhang, K., Chan, K.H. & Liao, X. 2014 On precessing flow in an oblate spheroid of arbitrary eccentricity. J. Fluid Mech. 743, 358384.CrossRefGoogle Scholar
Zhang, K., Chan, K.H., Liao, X. & Aurnou, J.M. 2013 The non-resonant response of fluid in a rapidly rotating sphere undergoing longitudinal libration. J. Fluid Mech. 720, 212235.CrossRefGoogle Scholar
Zhang, K., Kong, D. & Schubert, G. 2017 Shape, internal structure, zonal winds, and gravitational field of rapidly rotating Jupiter-like planets. Annu. Rev. Earth Planet. Sci. 45 (1), 416446.CrossRefGoogle Scholar
Zhang, K. & Liao, X. 2004 A new asymptotic method for the analysis of convection in a rapidly rotating sphere. J. Fluid Mech. 518, 319346.CrossRefGoogle Scholar
Zhang, K., Liao, X. & Busse, F.H. 2007 Asymptotic solutions of convection in rapidly rotating non-slip spheres. J. Fluid Mech. 578, 371380.CrossRefGoogle Scholar