Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T18:08:49.006Z Has data issue: false hasContentIssue false

A pinned or free-floating rigid plate on a thin viscous film

Published online by Cambridge University Press:  11 November 2014

Philippe H. Trinh
Affiliation:
Oxford Centre for Industrial and Applied Mathematics (OCIAM), University of Oxford, Mathematical Institute, Andrew Wiles Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK
Stephen K. Wilson*
Affiliation:
Department of Mathematics and Statistics, University of Strathclyde, Livingstone Tower, 26 Richmond Street, Glasgow G1 1XH, UK
Howard A. Stone
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: [email protected]

Abstract

A pinned or free-floating rigid plate lying on the free surface of a thin film of viscous fluid, which itself lies on top of a horizontal substrate that is moving to the right at a constant speed is considered. The focus of the present work is to describe how the competing effects of the speed of the substrate, surface tension, viscosity, and, in the case of a pinned plate, the prescribed pressure in the reservoir of fluid at its upstream end, determine the possible equilibrium positions of the plate, the free surface, and the flow within the film. The present problems are of interest both in their own right as paradigms for a range of fluid–structure interaction problems in which viscosity and surface tension both play an important role, and as a first step towards the study of elastic effects.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audoly, B. 2011 Localized buckling of a floating elastica. Phys. Rev. E 84, 011605.Google Scholar
Bico, J., Roman, B., Moulin, L. & Boudaoud, A. 2004 Electrocapillary coalescence in wet hair. Nature 432, 690.CrossRefGoogle Scholar
Conway, H. D. & Richman, M. W. 1983 The effects of contact lens deformation on tear film pressure and thickness during motion of the lens towards the eye. J. Biomech. Engng 105, 4750.Google Scholar
Dixit, H. N. & Homsy, G. M. 2013 The elastic Landau–Levich problem. J. Fluid Mech. 732, 528.Google Scholar
Duffy, B. R., Wilson, S. K. & Lee, M. E. M. 2007 A mathematical model of fluid flow in a scraped-surface heat exchanger. J. Engng Maths 57, 381405.Google Scholar
Duprat, C., Protière, S., Beebe, A. Y. & Stone, H. A. 2012 Wetting of flexible fibre arrays. Nature 482, 510513.Google Scholar
Giacomin, A. J., Cook, J. D., Johnson, L. M. & Mix, A. W. 2012 Flexible blade coating. J. Coat. Technol. Res. 9, 269277.Google Scholar
Hewitt, I. J. & Balmforth, N. J. 2012 Viscoplastic lubrication theory with application to bearings and the washboard instability of a planing plate. J. Non-Newtonian Fluid Mech. 169–170, 7490.Google Scholar
Hewitt, I. J., Balmforth, N. J. & McElwaine, J. N. 2012 Granular and fluid washboards. J. Fluid Mech. 692, 446463.Google Scholar
Hosoi, A. E. & Mahadevan, L. 2004 Peeling, healing, and bursting in a lubricated elastic sheet. Phys. Rev. Lett. 93, 137802.Google Scholar
Iliopoulos, I. & Scriven, L. E. 2005 A blade-coating study using a finite-element simulation. Phys. Fluids 17, 127101.Google Scholar
Kamiyama, S. & Kohnsari, M. M. 2000 Hydrodynamics of a soft contact lens during sliding motion. J. Tribol. 122, 573577.CrossRefGoogle Scholar
Maki, K. L. & Ross, D. S. 2014 A new model for the suction pressure under a contact lens. J. Biol. Syst. 22, 235248.CrossRefGoogle Scholar
McLeod, J. B. 1996 Solution of a contact lens problem. Eur. J. Appl. Maths 7, 595602.Google Scholar
Moriarty, J. A. & Terrill, E. L. 1996 Mathematical modelling of the motion of hard contact lenses. Eur. J. Appl. Maths 7, 575594.Google Scholar
Nong, K. & Anderson, D. M. 2010 Thin film evolution over a thin porous layer: modelling a tear film on a contact lens. SIAM J. Appl. Maths 70, 27712795.Google Scholar
Pranckh, F. R. & Scriven, L. E. 1990 Elastohydrodynamics of blade coating. AIChE J. 36, 587597.Google Scholar
Quintans Carou, J., Wilson, S. K., Mottram, N. J. & Duffy, B. R. 2009 Asymptotic and numerical analysis of a simple model for blade coating. J. Engng Maths 63, 155176.Google Scholar
Singh, K., Lister, J. R. & Vella, D. 2014 A fluid-mechanical model of elastocapillary coalescence. J. Fluid Mech. 745, 621646.Google Scholar
Taroni, M. & Vella, D. 2012 Multiple equilibria in a simple elastocapillary system. J. Fluid Mech. 712, 273294.CrossRefGoogle Scholar
Tuck, E. O. & Schwartz, L. W. 1990 A numerical and asymptotic study of some third-order ordinary differential equations relevant to draining and coating flows. SIAM Rev. 32, 453469.Google Scholar
Wagner, T. J. W. & Vella, D. 2011 Floating carpets and the delamination of elastic sheets. Phys. Rev. Lett. 107, 044301.Google Scholar
Wong, H., Fatt, I. & Radke, C. J. 1996 Deposition and thinning of the human tear film. J. Colloid Interface Sci. 184, 4451.Google Scholar