Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T06:14:49.206Z Has data issue: false hasContentIssue false

Particle-wall collision in a viscoelastic fluid

Published online by Cambridge University Press:  25 August 2009

A. M. ARDEKANI
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3975, USA
D. D. JOSEPH
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3975, USA Department of Aerospace Engineering and Mechanics, University of Minnesota, MN 55455, USA
D. DUNN-RANKIN
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3975, USA
R. H. RANGEL*
Affiliation:
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA 92697-3975, USA
*
Email address for correspondence: [email protected]

Abstract

In this study, we present experimental results on particle-wall collision in viscoelastic fluids. A sphere is released in a tank filled with poly(ethylene-oxide) (PEO) mixed with water with varying concentrations up to 1.5%. The effect of Stokes and Deborah numbers on the rebound velocity of a spherical particle colliding onto a wall is considered. It has been observed that the slope at which the coefficient of restitution increases with Stokes number is smaller for higher Deborah numbers. Higher rebound occurs for higher PEO concentration at the same stokes number. However, the results for the coefficient of restitution in polymeric liquids can be collapsed together with the Newtonian fluid behaviour if one defines the Stokes number based on the local strain rate.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ardekani, A. M., Dabiri, S. & Rangel, R. H. 2008 a Collision of multi-particle and general shape objects in a viscous fluid. J. Comput. Phys. 227, 1009410107.CrossRefGoogle Scholar
Ardekani, A. M. & Rangel, R. H. 2008 Numerical investigation of particle–particle and particle-wall collisions in a viscous fluid. J. Fluid Mech. 596, 437466.CrossRefGoogle Scholar
Ardekani, A. M., Rangel, R. H. & Joseph, D. D. 2007 Motion of a sphere normal to a wall in a second-order fluid. J. Fluid Mech. 587, 163172.CrossRefGoogle Scholar
Ardekani, A. M., Rangel, R. H. & Joseph, D. D. 2008 b Two spheres in a stream of a second-order fluid. Phys. Fluids 20, 063101.CrossRefGoogle Scholar
Barnocky, G. & Davis, R. H. 1989 The influence of pressure-dependent density and viscosity on the elastohydrodynamic collision and rebound of two spheres. J. Fluid Mech. 209, 501519.CrossRefGoogle Scholar
Davis, R. H. 1987 Elastohydrodynamic collisions of particles. PhysicoChem. Hydrodyn. 9, 4152.Google Scholar
Davis, R. H., Serayssol, J. M. & Hinch, E. J. 1986 The elastohydrodynamic collision of two spheres. J. Fluid Mech. 163, 479497.CrossRefGoogle Scholar
Gondret, P., Hallouin, E., Lance, M. & Petit, L. 1999 Experiments on the motion of a solid sphere toward a wall: from viscous dissipation to elastohydrodynamic bouncing. Phys. Fluids 11, 28032805.CrossRefGoogle Scholar
Gondret, P., Lance, M. & Petit, L. 2002 Bouncing motion of spherical particles in fluids. Phys. Fluids 14, 643652.CrossRefGoogle Scholar
Guala, M. & Stocchino, A. 2007 Large-scale flow structures in particle-wall collision at low Deborah numbers. Eur. J. Mech. B-Fluid 26, 511530.CrossRefGoogle Scholar
Joseph, G. G. & Hunt, M. L. 2004 Oblique particle-wall collisions in a liquid. J. Fluid Mech. 510, 7193.CrossRefGoogle Scholar
Joseph, D. D., Riccius, O. & Arney, M. 1986 Shear-wave speeds and elastic-moduli for different liquids. Part 2. Experiments. J. Fluid Mech. 171, 309338.CrossRefGoogle Scholar
Joseph, G. G., Zenit, R., Hunt, M. L. & Rosenwinkel, A. M. 2001 Particle-wall collisions in a viscous fluid. J. Fluid Mech. 433, 329346.CrossRefGoogle Scholar
Legendre, D., Zenit, R., Daniel, C. & Guiraud, P. 2006 A note on the modelling of the bouncing of spherical drops or solid spheres on a wall in viscous fluid. Chem. Engng Sci. 61, 35433549.CrossRefGoogle Scholar
Liu, Y. J. & Joseph, D. D. 1993 Sedimentation of particles in polymer solutions. J. Fluid Mech. 255, 565595.CrossRefGoogle Scholar
Mena, B., Manero, O. & Leal, L. G. 1987 The influence of rheological properties on the slow flow past spheres. J. Non-Newton. Fluid Mech. 26, 247275.CrossRefGoogle Scholar
Riccius, O., Joseph, D. D. & Arney, M. 1987 Shear-wave speeds and elastic-moduli for different liquids. Part 3. Experiments-update. Rheol. Acta 26, 9699.CrossRefGoogle Scholar
Rodin, G. 1996 Squeeze film between two spheres in a power-law fluid. J. Non-Newton. Fluid Mech. 63, 141152.CrossRefGoogle Scholar
Shankar, P. N. & Kumar, M. 1994 Experimental determination of the kinematic viscosity of glycerol-water mixtures. Proc. R. Soc. Lond. A Math. 444, 573581.Google Scholar
Smart, J. R. & Leighton, D. T. 1989 Measurement of the hydrodynamic surface-roughness of noncolloidal spheres. Phys. Fluids A-Fluid 1, 5260.CrossRefGoogle Scholar
Stocchino, A. & Guala, M. 2005 Particle-wall collision in shear thinning fluids. Exp. Fluids 38, 476484.CrossRefGoogle Scholar