Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T06:14:13.996Z Has data issue: false hasContentIssue false

Particle migration in planar die-swell flows

Published online by Cambridge University Press:  19 July 2017

Ivan R. Siqueira
Affiliation:
Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22451-900, Brazil
Márcio S. Carvalho*
Affiliation:
Department of Mechanical Engineering, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ 22451-900, Brazil
*
Email address for correspondence: [email protected]

Abstract

We present a numerical study on particle migration in a planar extrudate flow of suspensions of non-Brownian hard spheres. The suspension is described as a Newtonian liquid with a concentration-dependent viscosity, and shear-induced particle migration is modelled according to the diffusive flux model. The fully coupled set of nonlinear differential equations governing the flow is solved with a stabilized finite element method together with the elliptic mesh generation method to compute the position of the free surface. We show that shear-induced particle migration inside the channel leads to a highly non-uniform particle concentration distribution under the free surface. It is found that particle migration dramatically changes the shape of the free surface when the suspension is compared to a Newtonian liquid with the same bulk properties. Remarkably, we observed extrudate expansion in the Newtonian and dilute suspension flows; in turn, at high concentrations, a die contraction appears. The model does not account for normal stress differences, and this result is a direct consequence of variations in the flow stress field caused by shear-induced particle migration.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbott, J. R., Graham, N., Tetlow, A. L., Altobelli, S. A., Fukushima, E., Mondy, L. A. & Stephens, T. S. 1991 Experimental observations of particle migration in concentrated suspensions: Couette flow. J. Rheol. 35, 773797.CrossRefGoogle Scholar
Ahmed, G. M. Y. & Singh, A. 2011 Numerical simulation of particle migration in asymmetric bifurcation channel. J. Non-Newtonian Fluid Mech. 166, 4251.CrossRefGoogle Scholar
Altobelli, S. A. & Givler, R. C. 1991 Velocity and concentration measurements of suspensions by nuclear magnetic resonance imaging. J. Rheol. 35, 721734.CrossRefGoogle Scholar
Aral, B. K. & Kalyon, D. M. 1997 Viscoelastic material functions of noncolloidal suspensions with spherical particles. J. Rheol. 41, 599620.CrossRefGoogle Scholar
Bajaj, M., Prakash, J. R. & Pasquali, M. 2008 A computational study of the effect of viscoelasticity on slot coating flow of dilute polymer solutions. J. Non-Newtonian Fluid Mech. 149, 104123.CrossRefGoogle Scholar
Benjamin, D. F.1994 Roll coating flows and multiple roll systems. PhD thesis, University of Minnesota, Minneapolis, MN, US.Google Scholar
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids, 1st edn. Wiley.Google Scholar
Bolstad, J. H. & Keller, H. B. 1986 A multigrid continuation method for elliptic problems. J. Sci. Stat. Comput. 7, 10811104.CrossRefGoogle Scholar
Boyer, F., Pouliquen, O. & Guazzelli, E. 2011a Dense suspensions in rotating-rod flows: normal stresses and particle migration. J. Fluid Mech. 686, 525.CrossRefGoogle Scholar
Boyer, F., Pouliquen, O. & Guazzelli, E. 2011b Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301.CrossRefGoogle ScholarPubMed
Bricker, J. M. & Butler, J. 2006 Oscillatory shear of suspensions of noncolloidal particles. J. Rheol. 50, 711728.CrossRefGoogle Scholar
Butler, J. E. & Bonnecaze, R. T. 1999 Imaging of particle shear migration with electrical impedance tomography. Phys. Fluids 11, 19821994.CrossRefGoogle Scholar
Butler, J. E., Majors, P. D. & Bonnecaze, R. T. 1999 Observations of shear-induced particle migration for oscillatory flow of a suspension within a tube. Phys. Fluids 11, 28652877.CrossRefGoogle Scholar
Campana, D. M., Silva, L. D. V. & Carvalho, M. S. 2017 Slot coating flows of non-colloidal particle suspensions. AIChE J. 63, 11221131.CrossRefGoogle Scholar
Carvalho, M. S. & Kheshgi, H. S. 2000 Low-flow limit in slot coating: theory and experiments. AIChE J. 46, 19071917.CrossRefGoogle Scholar
Carvalho, M. S. & Scriven, L. E. 1997 Deformable roll coating flows: steady state and linear perturbation analysis. J. Fluid Mech. 339, 143172.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Chapman, B.1990 Shear-induced migration phenomena in concentrated suspensions. PhD thesis, University of Notre Dame, Notre Dame, IN, USA.Google Scholar
Chow, A. W., Sinton, S. W., Iwamiya, J. H. & Stephens, T. S. 1994 Shear-induced migration in Couette and parallel-plate viscometers: NMR imaging and stress measurements. Phys. Fluids 6, 25612576.CrossRefGoogle Scholar
Christodoulou, K. N.1990 Computational physics of slide coating flow. PhD thesis, University of Minnesota, Minneapolis, MN, USA.Google Scholar
Chu, W.-B., Yang, J.-W., Wang, Y.-C., Liu, T.-J. & Guo, J. 2006 The effect of inorganic particles on slot die coating of poly(vinyl alcohol) solutions. J. Colloid Interface Sci. 297, 215225.CrossRefGoogle ScholarPubMed
Couturier, E., Boyer, F., Pouliquen, O. & Guazzelli, E. 2011 Suspensions in a tilted trough: second normal stress difference. J. Fluid Mech. 686, 2939.CrossRefGoogle Scholar
Dbouk, T., Lobry, L. & Lemaire, E. 2013 Normal stresses in concentrated non-Brownian suspensions. J. Fluid Mech. 715, 239272.CrossRefGoogle Scholar
Dodds, S., Carvalho, M. S. & Kumar, S. 2009 Stretching and slipping of liquid bridges near plates and cavities. Phys. Fluids 21, 092103.CrossRefGoogle Scholar
Dodds, S., Carvalho, M. S. & Kumar, S. 2011 Stretching liquid bridges with moving contact lines: the role of inertia. Phys. Fluids 23, 092101.CrossRefGoogle Scholar
Dodds, S., Carvalho, M. S. & Kumar, S. 2012 The dynamics of three-dimensional liquid bridges with pinned and moving contact lines. J. Fluid Mech. 707, 521540.CrossRefGoogle Scholar
Duff, I. S., Erisman, A. M. & Reid, J. K. 1989 Direct Method for Sparse Matrices. Oxford University Press.Google Scholar
Einstein, A. 1911 Berichtigung zu meiner arbeit: Eine nene bestimmung der molekuldimension. Ann. Phys. 34, 591592.CrossRefGoogle Scholar
Furbank, R. J. & Morris, J. F. 2004 An experimental study of particle effects on drop formation. Phys. Fluids 16, 17771790.CrossRefGoogle Scholar
Gadala-Maria, F. & Acrivos, A. 1980 Shear-induced structure in a concentrated suspension of solid spheres. J. Rheol. 24, 799814.CrossRefGoogle Scholar
Govindarajan, R., Nott, P. R. & Ramaswamy, S. 2001 Theory of suspension segregation in partially filled horizontally rotating cylinder. Phys. Fluids 13, 35173520.CrossRefGoogle Scholar
Graham, A. L. & Altobelli, S. A. 1991 NMR imaging of shear-induced diffusion and structure in concentrated suspensions. J. Rheol. 35, 191201.CrossRefGoogle Scholar
Graham, A. L., Mammoli, A. A. & Busch, M. B. 1998 Effects of demixing on suspension rheometry. Rheol. Acta 37, 139150.CrossRefGoogle Scholar
Guénette, R. & Fortin, M. 1995 A new mixed finite element method for computing viscoelastic flows. J. Non-Newtonian Fluid Mech. 60, 2752.CrossRefGoogle Scholar
Hampton, R. E., Mammoli, A. A., Graham, A. L., Tetlow, N. & Altobelli, S. A. 1997 Migration of particles undergoing pressure-driven flow in a circular conduit. J. Rheol. 41, 621640.CrossRefGoogle Scholar
Han, M., Kim, C., Kim, M. & Lee, S. 1999 Particle migration in tube flow of suspensions. J. Rheol. 43, 11571174.CrossRefGoogle Scholar
Husband, D. & Gadala-Maria, F. 1987 Anisotropic particle distribution in dilute suspensions of solid spheres in cylindrical Couette flow. J. Rheol. 31, 95110.CrossRefGoogle Scholar
Husband, D. M., Mondy, L. A., Ganani, E. & Graham, A. L. 1994 Direct measurements of shear-induced particle migration in suspensions of bimodal spheres. Rheol. Acta 33, 185192.CrossRefGoogle Scholar
Ingber, M. S., Graham, A. L., Mondy, L. A. & Fang, Z. 2009 An improved constitutive model for concentrated suspensions accounting for shear-induced particle migration rate dependence on particle radius. Intl J. Multiphase Flow 35, 270279.CrossRefGoogle Scholar
Jin, B. & Acrivos, A. 2004 Theory of particle segregation in rimming flow of suspensions containing neutrally buoyant particles. Phys. Fluids 16, 641651.CrossRefGoogle Scholar
Karnis, A., Goldsmith, A. L. & Mason, S. G. 1966 The kinetics of flowing dispersions: concentrated suspensions of rigid particles. J. Colloid Interface Sci. 22, 531553.CrossRefGoogle Scholar
Kharchenko, S. B., Douglas, J. F., Obrzut, J., Grulke, E. A. & Migler, K. B. 2004 Flow-induced properties of nanotube-filled polymer materials. Nat. Mater. 3, 564568.CrossRefGoogle ScholarPubMed
Kim, J. M., Lee, S. G. & Kim, C. 2008 Numerical simulations of particle migration in suspension flows: frame-invariant formulation of curvature-induced migration. J. Non-Newtonian Fluid Mech. 150, 162176.CrossRefGoogle Scholar
Koh, C. J., Hookham, P. & Leal, L. G. 1994 An experimental investigation of concentrated suspension flows in a rectangular channel. J. Fluid Mech. 266, 132.CrossRefGoogle Scholar
Krishnan, G. P., Beimfohr, S. & Leighton, D. 1996 Shear-induced radial segregation in bidisperse suspensions. J. Fluid Mech. 321, 371393.CrossRefGoogle Scholar
Leighton, D. & Acrivos, A. 1987 The shear-induced migration of particles in concentrated suspensions. J. Fluid Mech. 181, 415439.CrossRefGoogle Scholar
Lhuillier, D. 2009 Migration of rigid particles in non-Brownian viscous suspension. Phys. Fluid 21, 023302.CrossRefGoogle Scholar
Liang, J. Z. 2010 Effects of diatomite on extrudate swell behavior of polypropylene composite melts. J. Appl. Polym. Sci. 118, 385389.CrossRefGoogle Scholar
Liu, C.-Y., Vandre, E., Carvalho, M. S. & Kumar, S. 2016 Dynamic wetting failure in surfactant solutions. J. Fluid Mech. 789, 285309.CrossRefGoogle Scholar
Loimer, T., Nir, A. & Semiat, R. 2002 Shear-induced corrugation of free interfaces in concentrated suspensions. J. Non-Newtonian Fluid Mech. 102, 115134.CrossRefGoogle Scholar
Miller, R. M. & Morris, J. F. 2006 Normal stress-driven migration and axial development in pressure-driven flow of concentrated suspensions. J. Non-Newtonian Fluid Mech. 135, 149165.CrossRefGoogle Scholar
Min, K. H. & Kim, C. 2010 Simulation of particle migration in free-surface flows. AIChE J. 56, 25392550.CrossRefGoogle Scholar
Morris, J. F. 2001 Anomalous migration in simulated oscillatory pressure-driven flow of a concentrated suspension. Phys. Fluids 13, 24572562.CrossRefGoogle Scholar
Morris, J. F. & Boulay, F. 1999 Curvilinear flows of noncolloidal suspensions: the role of normal stresses. J. Rheol. 43, 12131237.CrossRefGoogle Scholar
Nicolas, M. 2002 Experimental study of gravity-driven dense suspension jets. Phys. Fluids 14, 35703576.CrossRefGoogle Scholar
Norman, J. T., Nayak, H. V. & Bonnecaze, R. T. 2005 Migration of buoyant particles in low-Reynolds-number pressure-driven flows. J. Fluid Mech. 523, 135.CrossRefGoogle Scholar
Nott, P. R. & Brady, J. F. 1994 Pressure-driven flow of suspensions: simulation and theory. J. Fluid Mech. 275, 157199.CrossRefGoogle Scholar
Nott, P. R., Guazzelli, E. & Pouliquen, O. 2011 The suspension balance model revisited. Phys. Fluid 23, 043304.CrossRefGoogle Scholar
Pasquali, M. & Scriven, L. E. 2002 Free surface flows of polymer solutions with models based on the conformation tensor. J. Non-Newtonian Fluid Mech. 108, 363409.CrossRefGoogle Scholar
Phillips, R. J., Armstrong, R. C., Brown, R. C., Graham, A. L. & Abbott, J. R. 1992 A constitutive equation for concentrated suspensions that accounts for shear-induced particle migrations. Phys. Fluids 4, 3040.CrossRefGoogle Scholar
Rao, R. R., Mondy, L. A., Baer, T. A., Altobelli, S. A. & Stephens, T. S. 2002 NMR measurements and simulations of particle migration in non-Newtonian fluids. Chem. Engng Commun. 189, 122.CrossRefGoogle Scholar
Rebouças, R. B., Siqueira, I. R., de Souza Mendes, P. R. & Carvalho, M. S. 2016 On the pressure-driven flow of suspensions: particle migration in shear sensitive liquids. J. Non-Newtonian Fluid Mech. 234, 178187.CrossRefGoogle Scholar
Romero, O. J., Scriven, L. E. & Carvalho, M. S. 2006 Slot coating of mildly viscoelastic liquids. J. Non-Newtonian Fluid Mech. 138, 6375.CrossRefGoogle Scholar
Romero, O. J., Suszynski, W. J., Scriven, L. E. & Carvalho, M. S. 2004 Low-flow limit in slot coating of dilute solutions of high molecular weight polymer. J. Non-Newtonian Fluid Mech. 118, 137156.CrossRefGoogle Scholar
Santamaría-Holek, I. & Mendoza, C. I. 2010 The rheology of concentrated suspensions of arbitrarily-shaped particles. J. Colloid Interface Sci. 346, 118126.CrossRefGoogle ScholarPubMed
de Santos, J. M.1991 Two-phase cocurrent downflow through constricted passages. PhD thesis, University of Minnesota, Minneapolis, MN, USA.Google Scholar
Singh, A., Nir, A. & Semiat, R. 2006 Free-surface flow of concentrated suspensions. Intl J. Multiphase Flow 32, 775790.CrossRefGoogle Scholar
Sinton, S. A. & Chow, A. 1991 NMR flow imaging of fluids and solid suspensions in Poiseuille flow. J. Rheol. 35, 735772.CrossRefGoogle Scholar
Siqueira, I. R., Rebouças, R. B. & Carvalho, M. S. 2017a Migration and alignment in the flow of elongated particle suspensions through a converging-diverging channel. J. Non-Newtonian Fluid Mech. 243, 5663.CrossRefGoogle Scholar
Siqueira, I. R., Rebouças, R. B. & Carvalho, M. S. 2017b Particle migration and alignment in slot coating flows of elongated particle suspensions. AIChE J.; Available online at Wiley Online Library – doi:10.1002/aic.15653.CrossRefGoogle Scholar
Snook, B., Butler, J. E. & Guazzelli, E. 2016 Dynamics of shear-induced migration of spherical particles in oscillatory pipe flow. J. Fluid Mech. 786, 128153.CrossRefGoogle Scholar
Stickel, J. J. & Powell, R. L. 2005 Fluid mechanics and rheology of dense suspensions. Annu. Rev. Fluid Mech. 37, 129149.CrossRefGoogle Scholar
Subia, S. R., Ingber, M. S., Mondy, L. A., Altobelli, S. A. & Graham, A. L. 1998 Modelling of concentrated suspensions using a continuum constitutive equation. J. Fluid Mech. 373, 193219.CrossRefGoogle Scholar
Szady, M. J., Salamon, T. R., Liu, A. W., Armstrong, R. C. & Brown, R. A. 1995 A new mixed finite element method for viscoelastic flows governed by differential constitutive equations. J. Non-Newtonian Fluid Mech. 59, 215243.CrossRefGoogle Scholar
Tadros, T. F. 2011 Rheology of Dispersions: Principles and Applications. Wiley.Google Scholar
Tadros, T. F. 2017 Suspension Concentrates: Preparation, Stability and Industrial Applications. Walter De Gruyter.CrossRefGoogle Scholar
Tanner, R. I. 1985 Engineering Rheology, 1st edn. OUP.Google Scholar
Tetlow, N., Graham, A. L., Ingber, M. S., Rubia, S. R., Mondy, L. A. & Altobelli, S. A. 1998 Particle migration in a Couette apparatus: experiment and modeling. J. Rheol. 42, 307327.CrossRefGoogle Scholar
Timberlake, B. D. & Morris, J. F. 2002 Concentration band dynamics in free-surface Couette flow of a suspension. Phys. Fluids 14, 15801589.CrossRefGoogle Scholar
Timberlake, D. M. & Morris, J. F. 2005 Particle migration and free-surface topography in inclined plane flow of a suspension. J. Fluid Mech. 538, 309341.CrossRefGoogle Scholar
Tirumkudulu, M., Mileo, A. & Acrivos, A. 2000 Particle segregation in monodisperse sheared suspension in partially filled rotating horizontal cylinder. Phys. Fluids 12, 16151618.CrossRefGoogle Scholar
Tirumkudulu, M., Tripathi, A. & Acrivos, A. 1999 Particle segregation in monodisperse sheared suspension. Phys. Fluids 11, 507509.CrossRefGoogle Scholar
Tjiptowidjojo, K. & Carvalho, M. S. 2011 Operability limits of slide coating. Chem. Engng Sci. 66, 50775083.CrossRefGoogle Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2012 Delaying the onset of dynamic wetting failure through meniscus confinement. J. Fluid Mech. 707, 496520.CrossRefGoogle Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2013 On the mechanism of wetting failure during fluid displacement along a moving substrate. Phys. Fluids 25, 102103.CrossRefGoogle Scholar
Vandre, E., Carvalho, M. S. & Kumar, S. 2014 Characteristics of air entrainment during dynamic wetting failure along a planar substrate. J. Fluid Mech. 747, 119140.CrossRefGoogle Scholar
Zarraga, I. E., Hill, D. A. & Leighton, D. T. 2000 The characterization of the total stress of concentrated suspensions of non-colloidal spheres in Newtonian fluids. J. Rheol. 44, 185220.CrossRefGoogle Scholar