Hostname: page-component-55f67697df-twqc4 Total loading time: 0 Render date: 2025-05-12T09:37:05.021Z Has data issue: false hasContentIssue false

Parametric study and scaling of a minijet-manipulated supersonic jet

Published online by Cambridge University Press:  05 December 2024

Changhao Tan*
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, PR China
Arun Kumar Perumal
Affiliation:
Jet Acoustics and Flow-Control Laboratory, Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
Yu Zhou*
Affiliation:
Center for Turbulence Control, Harbin Institute of Technology, Shenzhen 518055, PR China School of Mechanics and Mechanical Engineering, College of Engineering, Eastern Institute of Technology, 315000 Ningbo, PR China
*
Email addresses for correspondence: [email protected], [email protected]
Email addresses for correspondence: [email protected], [email protected]

Abstract

This work aims to perform a parametric study on a round supersonic jet with a design Mach number Md = 1.8, which is manipulated using a single steady radial minijet with a view to enhancing its mixing. Four control parameters are examined, i.e. the mass flow rate ratio Cm and diameter ratio d/D of the minijet to main jet, and exit pressure ratio Pe/Pa and fully expanded jet Mach number Mj, where Pe and Pa are the nozzle exit and atmospheric pressures, respectively. Extensive pressure and schlieren flow visualization measurements are conducted on the natural and manipulated jets. The supersonic jet core length Lc/D exhibits a strong dependence on the four control parameters. Careful scaling analysis of experimental data reveals that Lc/D = f1(Cm, d/D, Pe/Pa, Mj) may be reduced to Lc/D = f2(ξ), where f1 and f2 are different functions. The scaling factor $\xi = J({d_i}/{D_j})/(\gamma M_j^2{P_e}/{P_a})$ is physically the penetration depth of the minijet into the main jet, where $J({d_i}/{D_j})$ is the square root of the momentum ratio of the minijet to main jet (di and Dj are the fully expanded diameters of d and D, respectively), γ is the specific heat ratio and $\gamma M_j^2{P_e}/{P_a}$ is the non-dimensional exit pressure ratio. Important physical insight may be gained from this scaling law into the optimal choice of control parameters such as d/D and Pe/Pa for practical applications. It has been found for the first time that the minijet may induce a street of quasi-periodical coherent structures once Cm exceeds a certain level for a given ${P_e}/{P_a}$. Its predominant dimensionless frequency Ste (≡ feDj/Uj) scales with a factor $\zeta = J({d_i}/{D_j})\; \sqrt {\gamma M_j^2{P_e}/{P_a}} $, which is physically the ratio of the minijet momentum thrust to the ambient pressure thrust. The formation mechanism of the street and its role in enhancing jet mixing are also discussed.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Joint first authors.

References

Akram, S., Perumal, A.K. & Rathakrishnan, E. 2021 Effect of tab parameters on the near-field mixing characteristics of a Mach 1.5 elliptic jet. Phys. Fluids 33 (3), 03611.CrossRefGoogle Scholar
Anderson, D.A., Tannehill, J.C. & Pletcher, R.H. 1984 Computational Fluid Mechanics and Heat Transfer. Hemisphere Publishing.Google Scholar
Anderson, J.D. 1982 Modern Compressible Flow with Historical Perspective. McGraw Hill Book Company.Google Scholar
André, B., Castelain, T. & Bailly, C. 2013 Experimental exploration of under-expanded supersonic jets. Shock Waves 24, 2132.CrossRefGoogle Scholar
Athira, C.M., Rajesh, G., Mohanan, S. & Parthasarathy, A. 2020 Flow interactions on supersonic projectiles in transitional ballistic regimes. J. Fluid Mech. 894, A27.CrossRefGoogle Scholar
Callender, B., Gutmark, E. & Martens, S. 2007 A comprehensive study of fluidic injection technology for jet noise reduction. In 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). AIAA.CrossRefGoogle Scholar
Cattafesta, L.N. & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.CrossRefGoogle Scholar
Chandra Sekar, T., Jaiswal, K., Arora, R., Sundararaj, R.H., Kushari, A. & Acharya, A. 2021 Nozzle performance maps for fluidic thrust vectoring. J. Propul. Power 37, 314325.CrossRefGoogle Scholar
Chue, S.H. 1975 Pressure probes for fluid measurement. Prog. Aerosp. Sci. 16, 147223.CrossRefGoogle Scholar
Coderoni, M., Lyrintzis, A.S. & Blaisdell, G.A. 2018 Les of unheated and heated supersonic jets with fluidic injection.CrossRefGoogle Scholar
Cuppoletti, D., Gutmark, E., Hafsteinsson, H. & Eriksson, L.-E. 2014 The role of nozzle contour on supersonic jet thrust and acoustics. AIAA J. 52, 25942614.CrossRefGoogle Scholar
Cuppoletti, D.R. & Gutmark, E. 2014 Fluidic injection on a supersonic jet at various mach numbers. AIAA J. 52, 293306.CrossRefGoogle Scholar
Davis, M.R. 1982 Variable control of jet decay. AIAA J. 20, 606609.CrossRefGoogle Scholar
Driftmyer, R.T. 1972 A correlation of free jet data. AIAA J. 10, 10931095.CrossRefGoogle Scholar
Gutmark, E.J., Schadow, K.C. & Yu, K.H. 1995 Mixing enhancement in supersonic free shear flows. Annu. Rev. Fluid Mech. 27, 375417.CrossRefGoogle Scholar
Henderson, B. 2010 Fifty years of fluidic injection for jet noise reduction. Intl J. Aeroacoust. 9, 91122.CrossRefGoogle Scholar
Ibrahim, M.K., Kunimura, R. & Nakamura, Y. 2002 Mixing enhancement of compressible jets by using unsteady microjets as actuators. AIAA J. 40, 681688.CrossRefGoogle Scholar
Jindra, K. 1970 Geometric effects on the performance characteristics of very small nozzles. Ohio School of Engineering.Google Scholar
Katanoda, H., Miyazato, Y., Masuda, M. & Matsuo, K. 2000 Pitot pressures of correctly-expanded and under-expanded free jets from axisymmetric supersonic nozzles. Shock Waves 10 (2), 95101.CrossRefGoogle Scholar
Khan, A., Nageswara Rao, A., Baghel, T., Perumal, A.K. & Kumar, R. 2022 Parametric study and scaling of Mach 1.5 jet manipulation using steady fluidic injection. Phys. Fluids 34 (3), 036107.CrossRefGoogle Scholar
Knowles, K. & Saddington, A.J. 2006 A review of jet mixing enhancement for aircraft propulsion applications. Proc. Inst. Mech. Engrs G: J. Aerosp. Engng 220, 103127.CrossRefGoogle Scholar
Krothapalli, A., Strykowski, P. & King, C. 1998 Origin of streamwise vortices in supersonic jets. AIAA J. 36, 869872.CrossRefGoogle Scholar
Miller, S.A.E. & Veltin, J. 2011 Experimental and numerical investigation of flow properties of supersonic helium-air jets. AIAA J. 49, 235246.CrossRefGoogle Scholar
Miller, S.A.E., Veltin, J., Morris, P.J. & Mclaughlin, D.K. 2009 Assessment of computational fluid dynamics for supersonic shock containing jets. AIAA J. 47, 27382746.CrossRefGoogle Scholar
Moffat, R.J. 1985 Using uncertainty analysis in the planning of an experiment. J. Fluids Engng 107 (2), 173–178.CrossRefGoogle Scholar
Munday, D., Gutmark, E., Liu, J. & Kailasanath, K. 2011 Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles. Phys. Fluids 23 (11), 116102.CrossRefGoogle Scholar
Muppidi, S. & Mahesh, K. 2005 Study of trajectories of jets in crossflow using direct numerical simulations. J. Fluid Mech. 530, 81100.CrossRefGoogle Scholar
Neely, A.J., Gesto, F.N. & Young, J. 2007 Performance studies of shock vector control fluidic thrust vectoring.CrossRefGoogle Scholar
Panda, J. 1998 Shock oscillation in under-expanded screeching jets. J. Fluid Mech. 363, 173198.CrossRefGoogle Scholar
Perumal, A.K. & Rathakrishnan, E. 2013 Truncated triangular tabs for supersonic-jet control. J. Propul. Power 29, 5065.Google Scholar
Perumal, A.K. & Rathakrishnan, E. 2021 Scaling law for supersonic core length in circular and elliptic free jets. Phys. Fluids 33 (5), 051707.Google Scholar
Perumal, A.K. & Rathakrishnan, E. 2022 Design of fluidic injector for supersonic jet manipulation. AIAA J. 60, 46394648.CrossRefGoogle Scholar
Perumal, A.K., Verma, S.B. & Rathakrishnan, E. 2015 Experimental study of subsonic and sonic jets controlled by air tabs. J. Propul. Power 31, 14731481.Google Scholar
Perumal, A.K., Wu, Z., Fan, D. & Zhou, Y. 2022 A hybrid AI control of turbulent jet: Reynolds number effect and scaling. J. Fluid Mech. 942, 128.CrossRefGoogle Scholar
Perumal, A.K. & Zhou, Y. 2018 Parametric study and scaling of jet manipulation using an unsteady minijet. J. Fluid Mech. 848, 592630.CrossRefGoogle Scholar
Perumal, A.K. & Zhou, Y. 2021 Axisymmetric jet manipulation using multiple unsteady minijets. Phys. Fluids 33 (6), 065124.CrossRefGoogle Scholar
Perumal, K.A., Aravindh Kumar, S.M., Surya Mitra, A. & Rathakrishnan, E. 2019 Empirical scaling analysis of supersonic jet control using steady fluidic injection. Phys. Fluids 31 (5), 056107.Google Scholar
Phalnikar, K.A., Kumar, R. & Alvi, F. 2008 Experiments on free and impinging supersonic microjets. Exp. Fluids 44, 819830.CrossRefGoogle Scholar
Phanindra, B.C. & Rathakrishnan, E. 2010 Corrugated tabs for supersonic jet control. AIAA J. 48, 453465.CrossRefGoogle Scholar
Powell, A. 1953 On the mechanism of choked jet noise. Proc. Phys. Soc. B 66, 1039.CrossRefGoogle Scholar
Rao, A.N., Kushari, A. & Mandal, A.C. 2020 Screech characteristics of under-expanded high aspect ratio elliptic jet. Phys Fluids 32 (7), 076106.CrossRefGoogle Scholar
Rathakrishnan, E. 2016 Instrumentation, Measurements, and Experiments in Fluids, pp. 368. CRC Press.CrossRefGoogle Scholar
Seifert, A., Theofilis, V. & Joslin, R. 2004 Issues in active flow control: theory, simulation and experiment. Prog Aerosp. Sci. 40, 237–289.Google Scholar
Semlitsch, B., Cuppoletti, D.R., Gutmark, E.J. & Mihăescu, M. 2019 Transforming the shock pattern of supersonic jets using fluidic injection. AIAA J. 57, 18511861.CrossRefGoogle Scholar
Sirovich, L. 1987 Proper orthogonal decomposition applied to turbulent flow in a square duct. Q. Appl. Maths 45, 561671.CrossRefGoogle Scholar
Smith, T.D., Cain, A.B. & Chenault, C.F. 2001 Numerical simulation of enhanced mixing in jet plumes using pulsed blowing. J. Aircraft 38, 458463.CrossRefGoogle Scholar
Taira, K., Brunton, S.L., Dawson, S.T.M., Rowley, C.W., Colonius, T., Mckeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55, 40134041.CrossRefGoogle Scholar
Tam, C.K.W., Seiner, J.M. & Yu, J.C. 1986 Proposed relationship between broadband shock associated noise and screech tones. J. Sound Vib. 110, 309321.CrossRefGoogle Scholar
Warsop, C. & Crowther, W.J. 2018 Fluidic flow control effectors for flight control. AIAA J. 56, 38083824.CrossRefGoogle Scholar
Werle, M.J., Shaffer, D.G. & Driftmyer, R.T. 1970 On freejet terminal shocks. AIAA J. 8, 22952297.CrossRefGoogle Scholar
Wu, K., Kim, T.H. & Kim, H.D. 2020 Theoretical and numerical analyses of aerodynamic characteristics on shock vector control. J. Aerosp. Engng 33 (5), 04020050.Google Scholar
Zaman, K.M.Q., Reeder, M.F. & Samimy, M. 1994 Control of an axisymmetric jet using vortex generators. Phys. Fluids 6 (2), 778–793.CrossRefGoogle Scholar
Zhang, H., Aubry, N., Chen, Z., Wu, W. & Sha, S. 2019 The evolution of the initial flow structures of a highly under-expanded circular jet. J. Fluid Mech. 871, 305331.CrossRefGoogle Scholar
Zhang, L. & Fan, J. 2003 Research of optimized design of three-dimensional contraction. Acta Aeronaut. Astronaut. Sin. 21, 417423.Google Scholar
Zigunov, F., Song, M., Sellappan, P. & Alvi, F.S. 2022 Multiaxis shock vectoring control of overexpanded supersonic jet using a genetic algorithm. J. Propul. Power 39 (2), 249257.Google Scholar
Zucrow, M. & Hoffman, J. 1976 Gas Dynamics. Wiley.Google Scholar