Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T05:42:57.517Z Has data issue: false hasContentIssue false

Oscillatory modes in an enclosed swirling flow

Published online by Cambridge University Press:  23 July 2001

J. M. LOPEZ
Affiliation:
Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804, USA
F. MARQUES
Affiliation:
Departament de Física Aplicada, Universitat Politècnica de Catalunya, Jordi Girona Salgado s/n, Mòdul B4 Campus Nord, 08034 Barcelona, Spain
J. SANCHEZ
Affiliation:
Departament de Física Aplicada, Universitat Politècnica de Catalunya, Jordi Girona Salgado s/n, Mòdul B4 Campus Nord, 08034 Barcelona, Spain

Abstract

The flow in a completely filled cylinder driven by a rotating endwall has multiple time-dependent stable states when the endwall rotation exceeds a critical value. These states have been observed experimentally and computed numerically elsewhere. In this article, the linear stability of the basic state, which is a non-trivial axisymmetric flow, is analysed at parameter values where the unsteady solutions exist. We show that the basic state undergoes a succession of Hopf bifurcations and the corresponding eigenvalues and eigenvectors of these excited modes describe most of the characteristics of the observed time-dependent states.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)