Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T03:41:54.106Z Has data issue: false hasContentIssue false

Oscillating foils of high propulsive efficiency

Published online by Cambridge University Press:  10 April 1998

J. M. ANDERSON
Affiliation:
Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA Charles Stark Draper Laboratory, Cambridge, MA 02139, USA
K. STREITLIEN
Affiliation:
Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
D. S. BARRETT
Affiliation:
Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
M. S. TRIANTAFYLLOU
Affiliation:
Department of Ocean Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Abstract

Thrust-producing harmonically oscillating foils are studied through force and power measurements, as well as visualization data, to classify the principal characteristics of the flow around and in the wake of the foil. Visualization data are obtained using digital particle image velocimetry at Reynolds number 1100, and force and power data are measured at Reynolds number 40 000. The experimental results are compared with theoretical predictions of linear and nonlinear inviscid theory and it is found that agreement between theory and experiment is good over a certain parametric range, when the wake consists of an array of alternating vortices and either very weak or no leading-edge vortices form. High propulsive efficiency, as high as 87%, is measured experimentally under conditions of optimal wake formation. Visualization results elucidate the basic mechanisms involved and show that conditions of high efficiency are associated with the formation on alternating sides of the foil of a moderately strong leading-edge vortex per half-cycle, which is convected downstream and interacts with trailing-edge vorticity, resulting eventually in the formation of a reverse Kármán street. The phase angle between transverse oscillation and angular motion is the critical parameter affecting the interaction of leading-edge and trailing-edge vorticity, as well as the efficiency of propulsion.

Type
Research Article
Copyright
© 1998 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)