Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T06:28:12.523Z Has data issue: false hasContentIssue false

Organized structures in a turbulent plane jet: topology and contribution to momentum and heat transport

Published online by Cambridge University Press:  21 April 2006

R. A. Antonia
Affiliation:
Department of Mechanical Engineering, University of Newcastle, N.S.W., 2308, Australia
A. J. Chambers
Affiliation:
Department of Mechanical Engineering, University of Newcastle, N.S.W., 2308, Australia
D. Britz
Affiliation:
Department of Mechanical Engineering, University of Newcastle, N.S.W., 2308, Australia
L. W. B. Browne
Affiliation:
Department of Mechanical Engineering, University of Newcastle, N.S.W., 2308, Australia

Abstract

In the self-preserving region of a slightly heated turbulent plane jet, conventional isocorrelation contours of velocity and temperature fluctuations support the existence of organized large-scale structures. Temperature fronts associated with these structures were visually detected using a spanwise rake of cold wires. This method of detection was then used to condition velocity and temperature fluctuations and products of these fluctuations. Ensemble-averaged velocity vectors, constructed in the plane of main shear, suggest a topology for the organized motion in which the temperature front is identified with the diverging separatrix connecting adjacent structures on the same side of the centreline. Coherent stresses and heat fluxes are particularly significant near the diverging separatrix. Contributions by the coherent and random motions to the averaged momentum and heat transports are generally of the same order of magnitude.

Type
Research Article
Copyright
© 1991 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonia R. A., Browne L. W. B., Rajagopalan, S. & Chambers A. J.1983 J. Fluid Mech. 134, 49.
Antonia R. A., Chambers A. J., Browne, L. W. B. & Rajagopalan S.1984 in Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi) p. 529. North-Holland.
Antonia R. A., Rajagopalan S., Subramanian, C. S. & Chambers A. J.1982 J. Fluid Mech. 121, 123.
Bendat, J. S. & Piersol A. G.1966 Measurement and Analysis of Random Data. Wiley.
Blackwelder, R. F. & Kaplan R. E.1976 J. Fluid Mech. 76, 89.
Cantwell B. J.1981 Ann. Rev. Fluid Mech. 13, 457.
Cantwell, B. & Coles D.1983 J. Fluid Mech. 136, 321.
Cervantes de Gortari, J. & Goldschmidt, V. W. 1981 Trans. ASME I: J. Fluids Engng, 103, 119.
Chambers A. J., Antonia R. A., Browne, L. W. B. & Raupach M. R.1983 Proc. 4th Symp. on Turbulent Shear Flows, Karlsruhe, p. 15.17.
Chen, C.-H. & Blackwelder R. F.1978 J. Fluid Mech. 89, 1.
Coles D.1984 In Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi) p. 397. North-Holland.
Corcos, G. M. & Sherman P. S.1976 J. Fluid Mech. 73, 241.
Goldschmidt V. W., Moallemi, M. K. & Oler J. W.1983 Phys. Fluids 26, 428.
Hussain A. K. M. F.1983 Phys. Fluids 26, 2816.
Hussain A. K. M. F.1984 In Turbulence and Chaotic Phenomena in Fluids (ed. T. Tatsumi) p. 453. North-Holland.
Jenkins, P. E. & Goldschmidt V. W.1976 Phys. Fluids 19, 613.
Moum J. N., Kawall, J. G. & Keffer J. F.1979 Phys. Fluids 22, 1240.
Mumford J. C.1982 J. Fluid Mech. 118, 241.
Oler, J. W. & Goldschmidt V. W.1981 Proc. 3rd Symp. on Turbulent Shear Flows, Davis, p. 11.1.
Oler, J. W. & Goldschmidt V. W.1982 J. Fluid Mech. 123, 523.
Perry A. E., Chong, M. S. & Lim T. T.1982 J. Fluid Mech. 116, 77.
Rajagopalan, S. & Antonia R. A.1981 J. Fluid Mech. 105, 261.
Subramanian C. S., Rajagopalan S., Antonia, R. A. & Chambers A. J.1982 J. Fluid Mech. 123, 335.
Thomas, A. S. W. & Brown G. L.1977 Proc. 6th Australasian Hydraulics and Fluid Mechanics Conference, Adelaide, p. 407.
Townsend A. A.1976 The Structure of Turbulent Shear Flow, 2nd edn. Cambridge University Press.