Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-25T06:18:59.507Z Has data issue: false hasContentIssue false

Optimal control of a separated boundary-layer flow over a bump

Published online by Cambridge University Press:  12 February 2018

Pierre-Yves Passaggia*
Affiliation:
Department of Marine Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
Uwe Ehrenstein
Affiliation:
Aix-Marseille Univ, CNRS, Centrale Marseille, M2P2, Marseille, France
*
Email address for correspondence: [email protected]

Abstract

The optimal control of a globally unstable two-dimensional separated boundary layer over a bump is considered using augmented Lagrangian optimization procedures. The present strategy allows for controlling of the flow from a fully developed nonlinear state back to the steady state using a single actuator. The method makes use of a decomposition between the slow dynamics associated with the base flow modification and the fast dynamics, known as flapping, characterized by a large scale oscillation of the recirculation region. Starting from a steady state forced by a suction actuator located near the separation point, the base flow modification is shown to be controlled by a vanishing suction strategy. For weakly unstable flow regimes, this control law can be further optimized by means of direct–adjoint iterations of the nonlinear Navier–Stokes equations. In the absence of external noise, this novel approach proves to be capable of controlling the transient dynamics and the base flow modification simultaneously.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Åkervik, E., Brandt, L., Henningson, D., Hœpffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18, 068102.Google Scholar
Antoulas, A. C. 2005 Approximation of Large-scale Dynamical Systems. SIAM.CrossRefGoogle Scholar
Bagheri, S., Brandt, L. & Henningson, D. S. 2009 Input–output analysis, model reduction and control of the flat-plate boundary layer. J. Fluid Mech. 620, 263298.Google Scholar
Bagheri, S. & Hanifi, A. 2007 The stabilizing effect of streaks on Tollmien–Schlichting and oblique waves: a parametric study. Phys. Fluids 19 (7), 078103.Google Scholar
Barbagallo, A., Sipp, D. & Schnmid, P. J. 2009 Closed-loop control of an open cavity flow using reduced order models. J. Fluid Mech. 641, 150.Google Scholar
Barkley, D., Gomes, M. & Henderson, D. 2002 Three-dimensional instability in flow over a backward-facing step. J. Fluid Mech. 127, 473496.Google Scholar
Beaudoin, J.-F., Cadot, O., Aider, J.-L. & Wesfreid, J. E. 2004 Three-dimensional stationary flow over a backward-facing step. Eur. J. Mech. (B/Fluids) 23 (1), 147155.Google Scholar
Bewley, T. R., Moin, P. & Temam, R. 2001 DNS-based predictive control of turbulence: an optimal benchmark of feedback algortihms. J. Fluid Mech. 447, 179225.Google Scholar
Boujo, E., Ehrenstein, U. & Gallaire, F. 2013 Open-loop control of noise amplification in a separated boundary layer flow. Phys. Fluids 25, 124106.Google Scholar
Boujo, E., Fani, A. & Gallaire, F. 2015 Second-order sensitivity of parallel shear flows and optimal spanwise-periodic flow modifications. J. Fluid Mech. 782, 491514.Google Scholar
Boujo, E. & Gallaire, F. 2014 Manipulating flow separation: sensitivity of stagnation points, separatrix angles and recirculation area to steady actuation. Proc. R. Soc. Lond. A 470 (2170), 20140365.Google ScholarPubMed
Boujo, E., Gallaire, F. & Ehrenstein, U. 2014 Open-loop control of a separated boundary layer. C. R. Méc. 342 (6–7), 403409.Google Scholar
Cattafesta, L. N. & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.Google Scholar
Cossu, C. & Brandt, L. 2002 Stabilization of Tollmien–Schlichting waves by finite amplitude optimal streaks in the blasius boundary layer. Phys. Fluids 14 (8), L57L60.Google Scholar
Cunha, G., Passaggia, P.-Y. & Lazareff, M. 2015 Optimization of the selective frequency damping parameters using model reduction. Phys. Fluids 27, 094103.Google Scholar
Duriez, T., Brunton, S. L. & Noack, B. R. 2017 Taming nonlinear dynamics with MLC. In Machine Learning Control–Taming Nonlinear Dynamics and Turbulence, pp. 93120. Springer.Google Scholar
Ehrenstein, U. & Gallaire, F. 2008 Two-dimensional global low-frequency oscillations in a separating boundary-layer flow. J. Fluid Mech. 614, 315327.Google Scholar
Ehrenstein, U., Passaggia, P-Y. & Gallaire, F. 2011 Control of a separated boundary layer: model reduction using global modes revisited. Theor. Comput. Fluid Dyn. 25, 195207.Google Scholar
Flinois, T. & Colonius, T. 2015 Optimal control of circular cylinder wakes using long control horizons. Phys. Fluids 27, 087105.Google Scholar
Gallaire, F., Marquillie, M. & Ehrenstein, U. 2007 Three-dimensional transverse instabilities in detached boundary-layers. J. Fluid Mech. 571, 221233.Google Scholar
Gautier, N. & Aider, J.-L. 2013 Control of the separated flow downstream of a backward-facing step using visual feedback. Proc. R. Soc. Lond. A 469 (2160).Google Scholar
Gautier, N. & Aider, J.-L. 2014 Feed-forward control of a perturbed backward-facing step flow. J. Fluid Mech. 759, 181196.Google Scholar
Geering, H. P. 2007 Optimal Control with Engineering Applications. Springer.Google Scholar
Haller, G. 2004 Exact theory of unsteady separation for two-dimensional flows. J. Fluid Mech. 512, 257311.Google Scholar
Huang, S.-C. & Kim, J. 2008 Control and system identification of a separated flow. Phys. Fluids 20 (10), 101509.Google Scholar
Hwang, Y., Kim, J. & Choi, H. 2013 Stabilization of absolute instability in spanwise wavy two-dimensional wakes. J. Fluid Mech. 727, 346378.Google Scholar
Jordi, B. E., Cotter, C. J. & Sherwin, S. J. 2014 Encapsulated formulation of the selective frequency damping method. Phys. Fluids 26 (3), 034101.Google Scholar
Joslin, R. D., Gunzburger, M. D., Nicolaides, R. A., Erlebacher, G. & Hussaini, M. Y. 1995 A self-contained, automated methodology for optimal flow control validated for transition delay. ICASE 95, 64.Google Scholar
Kim, J. & Bewley, R. 2007 A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383417.Google Scholar
Lanzerstorfer, D. & Kuhlmann, H. C. 2012 Global stability of the two-dimensional flow over a backward-facing step. J. Fluid Mech. 693, 127.Google Scholar
Mantič-Lugo, V., Arratia, C. & Gallaire, F. 2014 Self-consistent mean flow description of the nonlinear saturation of the vortex shedding in the cylinder wake. Phys. Rev. Lett. 113 (8), 084501.Google Scholar
Mantič-Lugo, V., Arratia, C. & Gallaire, F. 2015 A self-consistent model for the saturation dynamics of the vortex shedding around the mean flow in the unstable cylinder wake. Phys. Fluids 27 (7), 074103.Google Scholar
Marquillie, M. & Ehrenstein, U. 2002 Numerical simulation of a separating boundary-layer flow. Comput. Fluids 31, 683693.Google Scholar
Marquillie, M. & Ehrenstein, U. 2003 On the onset of nonlinear oscillations in a separating boundary-layer flow. J. Fluid Mech. 490, 169188.Google Scholar
Marxen, O. & Henningson, D. S. 2011 The effect of small-amplitude convective disturbances on the size and bursting of a laminar separation bubble. J. Fluid Mech. 671, 133.Google Scholar
Noack, B. R., Konstantin, A., Morzyński, M., Tadmor, G. & Thiele, F. 2003 A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335363.CrossRefGoogle Scholar
Passaggia, P.-Y. & Ehrenstein, U. 2013 Adjoint based optimization and control of a separated boundary-layer flow. Eur. J. Mech. (B/Fluids) 41, 169177.Google Scholar
Passaggia, P.-Y., Leweke, T. & Ehrenstein, U. 2012 Transverse instability and low-frequency flapping in incompressible separated boundary layer flows: an experimental study. J. Fluid Mech. 703, 363373.Google Scholar
Rodríguez, D., Gennaro, E. M. & Juniper, M. P. 2013 The two classes of primary modal instability in laminar separation bubbles. J. Fluid Mech. 734, R4.Google Scholar
Rowley, C. W., Mezić, I., Bagheri, S., Schlatter, P. & Henningson, D. S. 2009 Spectral analysis of nonlinear flows. J. Fluid Mech. 641, 115127.Google Scholar
Ruhe, A. 1984 Rational krylov sequence methods for eigenvalue computation. Linear Algebr. Applics. 58, 391405.Google Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.Google Scholar
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.Google Scholar
Schmid, P. J. & Henningson, D. S. 2001 Stability and Transition in Shear Flows. Springer.Google Scholar
Semeraro, O., Pralits, J. O., Rowley, C. W. & Henningson, D. S. 2013 Riccati-less approach for optimal control and estimation: an application to two-dimensional boundary layers. J. Fluid Mech. 731, 394417.Google Scholar
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.Google Scholar
Turton, S. E., Tuckerman, L. S. & Barkley, D. 2015 Prediction of frequencies in thermosolutal convection from mean flows. Phys. Rev. E 91 (4), 043009.Google ScholarPubMed
Weldon, M., Peacock, T., Jacobs, G. B., Helu, M. & Haller, G. 2008 Experimental and numerical investigation of the kinematic theory of unsteady separation. J. Fluid Mech. 611, 111.Google Scholar