Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-20T06:59:54.836Z Has data issue: false hasContentIssue false

On two-dimensional foam ageing

Published online by Cambridge University Press:  14 April 2011

J. DUPLAT
Affiliation:
Aix-Marseille Université, IUSTI, 13453 Marseille Cedex 13, France
B. BOSSA
Affiliation:
Aix-Marseille Université, IRPHE, 13384 Marseille Cedex 13, France
E. VILLERMAUX*
Affiliation:
Institut Universitaire de France, 103, boulevard Saint-Michel, 75005 Paris, France
*
Email address for correspondence: [email protected]

Abstract

The present study aims at documenting, making use of an original set-up allowing to acquire well-converged data, the coarsening of foams in two dimensions. Experiments show that a foam behaves quite differently depending on the way it has been prepared. We distinguish between an initially quasi-monodisperse foam and a polydisperse foam. The coarsening laws are initially different, although both foams reach a common, time-dependent asymptotic regime.

The ageing process relies on exchanges between adjacent foam cells (von Neumann's law), and on topological rearrangement (1 and 2 processes) whose rates are measured in all regimes. We attempt to make their contribution to the evolution of the area S and facet number n distribution of probability P(S, n, t) quantitative. The corresponding mean field theory predictions represent well the phenomenon qualitatively, and are sometimes in quantitative agreement with the measurements. A simplified version of this theory, taking the form of a Langevin model, explains in a straightforward manner the different scaling laws in the different regimes, for the different foams.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aboav, D. A. 1980 The arrangement of cells in a net. Metallography 13, 4358.Google Scholar
Beenakker, C. W. J. 1986 Evolution of two-dimensional soap-film networks. Phys. Rev. Lett. 57 (19), 24542457.CrossRefGoogle ScholarPubMed
Bohn, S., Douady, S. & Couder, Y. 2005 Four sided domains in hierarchical space dividing patterns. Phys. Rev. Lett. 94, 054503.CrossRefGoogle ScholarPubMed
Cantat, I., Kern, N. & Delannay, R. 2004 Dissipation in foam flowing through narrow channels. Europhys. Lett. 65 (5), 726732.Google Scholar
Chandrasekhar, S. 1943 Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15 (1), 189.Google Scholar
Cleri, F. 2000 A stochastic grain growth model based on a variational principle for dissipative systems. Physica A 282, 339354.Google Scholar
Cohen-Addad, S. & Hohler, R. 2001 Bubble dynamics relaxation in aqueous foam probed by multispeckle diffusing-wave spectroscopy. Phys. Rev. Lett. 86 (20), 47004703.Google Scholar
Durand, M. & Stone, H. A. 2006 Relaxation time of the topological t1 process in a two-dimensional foam. Phys. Rev. Lett. 97, 226101.Google Scholar
Flyvbjerg, H. 1993 Model for coarsening froths and foams. Phys. Rev. E 47 (6), 40374054.CrossRefGoogle ScholarPubMed
Glazier, J. A., Anderson, M. P. & Grest, G. S. 1990 Coarsening in the two-dimensional soap froth and the large-q Potts model: a detailed comparison. Phil. Mag. B 62 (6), 615645.Google Scholar
Glazier, J. A., Gross, S. P. & Stavans, J. 1987 Dynamics of two-dimensional soap froths. Phys. Rev. A 36 (1), 306312.CrossRefGoogle ScholarPubMed
Glazier, J. A. & Stavans, J. 1989 Non-ideal effects in the two-dimensional soap froth. Phy. Rev. A 40 (12), 73987401.CrossRefGoogle Scholar
Gopal, A. D. & Durian, D. J. 1995 Nonlinear bubble dynamics in a slowly driven foam. Phys. Rev. Lett. 75 (13), 26102613.Google Scholar
Hansen, F. K. & Rodsrud, G. 1991 Surface tension by pendant drop. J. Colloid Interface Sci. 141 (1), 19.Google Scholar
Hilgenfeldt, S. 2002 Bubble geometry. Nieuw Arhief voor Wiskunde 5 (3), 224230.Google Scholar
Hilgenfeldt, S., Arif, S. & Tsai, J.-C. 2008 Foam: a multiphase system with many facets. Phil. Trans. A 366, 21452159.Google ScholarPubMed
Hilgenfeldt, S., Kraynik, A. M., Koehler, S. A. & Stone, H. A. 2001 An accurate von Neumann's law for three-dimensional foams. Phys. Rev. Lett. 86, 26852688.Google Scholar
de Icaza, M., Jimenez Ceniceros, A. & Castano, V. M. 1994 Statistical distribution functions in 2d foams. J. Appl. Phys. 76, 73177322.CrossRefGoogle Scholar
Iglesias, J. R. & de Almeida, R. M. C. 1991 Statistical thermodynamics of a two-dimensional cellular system. Phys. Rev. A 43 (6), 27632770.Google Scholar
Krichevsky, O. & Stavans, J. 1992 Coarsening of two-dimensional soap froths in the presence of pinning centers. Phys. Rev. B 46 (17), 1057910582.CrossRefGoogle ScholarPubMed
Lambert, J., Mokso, R., Cantat, I., Cloetens, P., Glazier, J. A., Graner, F. & Delannay, R. 2009 Coarsening foams robustly reach a self-similar growth regime. Phys. Rev. Lett. 104, 248304.Google Scholar
Langevin, P. 1908 Sur la théorie du mouvement Brownien. Computes Rendus Acad. Sci. Paris 146, 530533.Google Scholar
Levitan, B., Slepyan, E., Krichevsky, O., Stavans, J. & Domany, E. 1994 Topological distribution of survivors in an evolving structure. Phys. Rev. Lett. 73 (5), 756759.Google Scholar
Lewis, F. T. 1928 The correlation between cell division and the shapes and sizes of prismatic cells in the epidermis of cucumis. Anat. Rec. 38 (3), 341376.CrossRefGoogle Scholar
MacPherson, R. D. & Srolovitz, D. J. 2007 The von Neumann relation generalized to coarsening of three-dimensional microstructures. Nature 446, 10531055.CrossRefGoogle Scholar
Marder, M. 1987 Soap-bubble growth. Phys. Rev. A 36 (1), 438440.CrossRefGoogle ScholarPubMed
Miri, M. & Rivier, N. 2006 Universality in two-dimensional cellular structures evolving by cell division and disappearance. Phys. Rev. E 73 (3), 031101.CrossRefGoogle ScholarPubMed
Mombach, J. C. M., de Almeida, R. M. C. & Iglesias, J. R. 1993 Mitosis and growth in biological tissues. Phys. Rev. E 48 (1), 598602.CrossRefGoogle ScholarPubMed
Monnereau, C. & Vignes-Adler, M. 1998 Dynamics of 3d real foam coarsening. Phys. Rev. Lett. 80 (23), 52285231.Google Scholar
von Neumann, J. 1952 Discussion. Metal Interfaces, pp. 108–110. American Society of Metals.Google Scholar
Prodi, F. & Levi, L. 1980 Aging of accreted ice. J. Atmos. Sci. 37, 13751384.2.0.CO;2>CrossRefGoogle Scholar
Segel, D., Mukamel, D., Krichevsky, O. & Stavans, J. 1993 Selection mechanism and area distribution in two-dimensional cellular structures. Phys. Rev. E 47 (2), 812819.Google Scholar
Sire, C. & Majumdar, S. N. 1995 Correlations and coarsening in the q-state Potts model. Phys. Rev. Lett. 74 (21), 43214324.Google Scholar
Soli, A. L. & Byrne, R. H. 2002 CO2 system hydration and dehydration kinetics and the equilibrium CO2/H2CO3 ratio in aqueous NaCl solution. Mar. Chem. 78, 65– 73.Google Scholar
Stavans, J. 1990 Temporal evolution of two-dimensional drained soap froths. Phys. Rev. A 42 (8), 50495051.Google Scholar
Stavans, J. 1993 The evolution of cellular structures. Rep. Prog. Phys. 56, 733789.Google Scholar
Stavans, J. & Glazier, J. A. 1989 Soap froth revisited: dynamic scaling in the two-dimensional froth. Phys. Rev. Lett. 62 (11), 13181321.Google Scholar
Streitenberger, P. & Zollner, D. 2006 Effective growth law from three-dimensional grain growth simulations and new analytical grain size distribution. Scr. Mater. 55, 461464.CrossRefGoogle Scholar
Szeto, K. Y., Aste, T. & Tam, W. Y. 1998 Topological correlations in soap froths. Phys. Rev. E 58 (2), 26562659.Google Scholar
Szeto, K. Y. & Tam, W. Y. 1995 Lewis' law versus Feltham's law in soap froth. Physica A: Stat. Theor. Phys. 221 (1–3), 256262, Proceedings of the Second IUPAP Topical Conference and the Third Taipei International Symposium on Statistical Physics.Google Scholar
Tam, W. Y. & Szeto, K. Y. 1996 Evolution of soap froth under temperature effects. Phys. Rev. E 53 (1), 877880.Google Scholar
Weaire, D. & Hutzler, S. 1999 The Physics of Foams. Oxford University Press.Google Scholar