Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-09T13:43:17.369Z Has data issue: false hasContentIssue false

On the spreading of a turbulent spot in the absence of a pressure gradient

Published online by Cambridge University Press:  20 April 2006

I. Wygnanski
Affiliation:
School of Engineering, Tel-Aviv University
M. Zilberman
Affiliation:
Department of Aerospace Engineering, University of Southern California Present address: Department of Aeronautics and Astronautics, Massachusetts Institute of Technology.
Joseph H. Haritonidis
Affiliation:
Department of Aerospace Engineering, University of Southern California

Abstract

We derive a path-integral representation for the effective diffusion function of a passive scalar field. We use it to calculate the long-time effective diffusivity in Gaussian turbulence in the near-Markovian limit. Our results confirm the negative effect of vorticity predicted by previous discussions. They also demonstrate that the helicity of the turbulence when present may be as important an influence as the vorticity.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amini, J. 1978 Ph.D. thesis, Institut de Mécanique de Grenoble: to be published in Phys. Fluids.
Cantwell, B., Coles, D. & Dimotakis, P. 1978 J. Fluid Mech. 87, 641.
Coles, D. & Barker, S. J. 1975 In Proc. Project SQUID Workshop on Turbulent Mixing in Non-Reactive and Reactive Flows (ed. S. N. B. Murthy). Plenum.
Gad-Ek-Hak, M., Blackwelder, R. F. & Riley, J. J. 1980 In Laminar–Turbulent Transition (ed. R. Eppler & H. Fasel), p. 297. Springer.
Gad-El-Hak, M., Blackwelder, R. F. & Riley, J. J. 1981 J. Fluid Mech. 110, 73.
Kovasznay, L. S. G., Komoda, H. & Vasudeva, B. R. 1962 In Proc. Heat Transfer and Fluid Mechanics Institute. Stanford University Press.
Perry, A. E., Lim, T. T. & Teh, E. W. 1981 J. Fluid Mech. 104, 387.
Savas, O. 1979 Ph.D. thesis, California Institute of Technology.
Schubauer, G. B. & Klebanoff, P. S. 1956 NACA Rep. no. 1289.
Wygnanski, I. 1981a In The Role of Coherent Structures in Modeling Turbulence and Mixing (ed. J. Jimenez). Lecture Notes in Physics, vol. 136, p. 304. Springer.
Wygnanski, I. 1981b In Proc. 7th Biennial Symp. on Turbulence – Rolla, Missouri.
Wygnanski, I. & Champagne, F. H. 1973 J. Fluid Mech. 59, 281.
Wygnanski, I., Haritonidis, J. & Kaplan, R. E. 1979 J. Fluid Mech. 92, 505.
Wygnanski, I., Sokolov, M. & Friedman, D. 1976 J. Fluid Mech. 84, 785.
Zilberman, M., Wygnanski, I. & Kaplan, R. E. 1979 Phys. Fluids Suppl. 20, S 258.
Zilberman, M. 1981 Ph.D. thesis, School of Engineering, Tel-Aviv University.