Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T00:01:42.888Z Has data issue: false hasContentIssue false

On the shape of resolvent modes in wall-bounded turbulence

Published online by Cambridge University Press:  27 August 2019

Scott T. M. Dawson*
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA Mechanical, Materials and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL 60616, USA
Beverley J. McKeon
Affiliation:
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
*
Email address for correspondence: [email protected]

Abstract

This work develops a methodology for approximating the shape of leading resolvent modes for incompressible, quasi-parallel, shear-driven turbulent flows using prescribed analytic functions. We demonstrate that these functions, which arise from the consideration of wavepacket pseudoeigenmodes of simplified linear operators (Trefethen, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 461, 2005, pp. 3099–3122. The Royal Society), give an accurate approximation for the energetically dominant wall-normal vorticity component of a class of nominally wall-detached modes that are centred about the critical layer. We validate our method on a model operator related to the Squire equation, and show for this simplified case how wavepacket pseudomodes relate to truncated asymptotic expansions of Airy functions. Following the framework developed in McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), we next apply a sequence of simplifications to the resolvent formulation of the Navier–Stokes equations to arrive at a scalar differential operator that is amenable to such analysis. The first simplification decomposes the resolvent operator into Orr–Sommerfeld and Squire suboperators, following Rosenberg & McKeon (Fluid Dyn. Res., vol. 51, 2019, 011401). The second simplification relates the leading resolvent response modes of the Orr–Sommerfeld suboperator to those of a simplified scalar differential operator – which is the Squire operator equipped with a non-standard inner product. This characterisation provides a mathematical framework for understanding the origin of leading resolvent mode shapes for the incompressible Navier–Stokes resolvent operator, and allows for rapid estimation of dominant resolvent mode characteristics without the need for operator discretisation or large numerical computations. We explore regions of validity for this method, and show that it can predict resolvent response mode shape (though not necessary the corresponding resolvent gain) over a wide range of spatial wavenumbers and temporal frequencies. In particular, we find that our method remains relatively accurate even when the modes have some amount of ‘attachment’ to the wall, and that that the region of validity contains the regions in parameter space where large-scale and very-large-scale motions typically reside. We relate these findings to classical lift-up and Orr amplification mechanisms in shear-driven flows.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bamieh, B. & Dahleh, M. 2001 Energy amplification in channel flows with stochastic excitation. Phys. Fluids 13 (11), 32583269.10.1063/1.1398044Google Scholar
Böberg, L. & Brösa, U. 1988 Onset of turbulence in a pipe. Z. Naturforsch. 43 (8–9), 697726.10.1515/zna-1988-8-901Google Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.10.1063/1.858386Google Scholar
Cantwell, B. J. 1981 Organized motion in turbulent flow. Annu. Rev. Fluid Mech. 13 (1), 457515.10.1146/annurev.fl.13.010181.002325Google Scholar
Chomaz, J. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.10.1146/annurev.fluid.37.061903.175810Google Scholar
Cossu, C., Pujals, G. & Depardon, S. 2009 Optimal transient growth and very large–scale structures in turbulent boundary layers. J. Fluid Mech. 619, 7994.10.1017/S0022112008004370Google Scholar
Davies, E. B. 1999a Pseudo-spectra, the harmonic oscillator and complex resonances. Proc. R. Soc. Lond. A 455 (1982), 585599.10.1098/rspa.1999.0325Google Scholar
Davies, E. B. 1999b Semi-classical states for non-self-adjoint Schrödinger operators. Commun. Math. Phys. 200 (1), 3541.10.1007/s002200050521Google Scholar
Del Alamo, J. C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.10.1017/S0022112006000607Google Scholar
Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability. Cambridge University Press.10.1017/CBO9780511616938Google Scholar
Edstrand, A. M., Schmid, P. J., Taira, K. & Cattafesta, L. N. 2018 A parallel stability analysis of a trailing vortex wake. J. Fluid Mech. 837, 858895.10.1017/jfm.2017.866Google Scholar
Farrell, B. & Ioannou, J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids 5 (11), 26002609.10.1063/1.858894Google Scholar
Guala, M., Hommema, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.10.1017/S0022112006008871Google Scholar
Gustavsson, L. H. 1986 Excitation of direct resonances in plane Poiseuille flow. Stud. Appl. Maths 75 (3), 227248.10.1002/sapm1986753227Google Scholar
Hack, M. J. P. & Moin, P. 2017 Algebraic disturbance growth by interaction of Orr and lift-up mechanisms. J. Fluid Mech. 829, 112126.10.1017/jfm.2017.557Google Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.10.1017/S0022112081001791Google Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.10.1017/S0022112006003946Google Scholar
Hwang, Y. & Cossu, C. 2010 Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.10.1017/S0022112010003629Google Scholar
Jiménez, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25 (11), 110814.10.1063/1.4819081Google Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.10.1017/jfm.2018.144Google Scholar
Jovanović, M. R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.10.1017/S0022112005004295Google Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.10.1063/1.869889Google Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.10.1017/S0022112067001740Google Scholar
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (2), 283325.10.1017/S0022112070000629Google Scholar
Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28 (4), 735756.10.1137/0128061Google Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (2), 243251.10.1017/S0022112080000122Google Scholar
Leonard, A. 2016 Approximate solutions to the linearized Navier–Stokes equations for incompressible channel flow. In Proceedings of the 20th Australasian Fluid Mechanics Conference, Australasian Fluid Mechanics Society.Google Scholar
Mao, X. & Sherwin, S. J. 2011 Continuous spectra of the batchelor vortex. J. Fluid Mech. 681, 123.10.1017/jfm.2011.194Google Scholar
McKeon, B. J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.10.1017/jfm.2017.115Google Scholar
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.10.1017/S002211201000176XGoogle Scholar
Moarref, R., Sharma, A. S., Tropp, J. A. & McKeon, B. J. 2013 Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.10.1017/jfm.2013.457Google Scholar
Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.10.1017/S0022112009007423Google Scholar
Obrist, D. & Schmid, P. J. 2010 Algebraically decaying modes and wave packet pseudo-modes in swept Hiemenz flow. J. Fluid Mech. 643, 309332.10.1017/S0022112009992114Google Scholar
Obrist, D. & Schmid, P. J. 2011 Algebraically diverging modes upstream of a swept bluff body. J. Fluid Mech. 683, 346356.10.1017/jfm.2011.269Google Scholar
Olver, F. W. J. 2014 Asymptotics and Special Functions. Academic Press.Google Scholar
Orr, W. M’F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid. In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, pp. 69138. JSTOR.Google Scholar
Perot, B. & Moin, P. 1996 A new approach to turbulence modeling. In Proceedings of the Center for Turbulence Research Summer Program, Stanforn University.Google Scholar
Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.10.1017/S0022112093003738Google Scholar
Reddy, S. C., Schmid, P. J. & Henningson, D. S. 1993 Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Maths 53 (1), 1547.10.1137/0153002Google Scholar
Reynolds, W. C. & Tiederman, W. G. 1967 Stability of turbulent channel flow, with application to Malkus’s theory. J. Fluid Mech. 27 (2), 253272.10.1017/S0022112067000308Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.10.1146/annurev.fl.23.010191.003125Google Scholar
Rosenberg, K. & McKeon, B. J. 2019 Efficient representation of exact coherent states of the Navier–Stokes equations using resolvent analysis. Fluid Dyn. Res. 51, 011401.Google Scholar
Saxton-Fox, T. & McKeon, B. J. 2017 Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent flows. J. Fluid Mech. 826, R6.10.1017/jfm.2017.493Google Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.10.1146/annurev.fluid.38.050304.092139Google Scholar
Schmid, P. J. & Henningson, D. S. 1994 Optimal energy density growth in Hagen–Poiseuille flow. J. Fluid Mech. 277, 197225.10.1017/S0022112094002739Google Scholar
Schmid, P. J. & Henningson, D. S. 2012 Stability and Transition in Shear Flows. Springer Science & Business Media.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.10.1017/S002211200100667XGoogle Scholar
Sharma, A. S. & McKeon, B. J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.10.1017/jfm.2013.286Google Scholar
Sharma, A. S., Moarref, R. & McKeon, B. J. 2017 Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence. Phil. Trans. R. Soc. A 375 (2089), 20160089.Google Scholar
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.10.1146/annurev-fluid-122109-160753Google Scholar
Symon, S., Rosenberg, K., Dawson, S. T. M. & McKeon, B. J. 2018 Non-normality and classification of amplification mechanisms in stability and resolvent analysis. Phys. Rev. Fluids 3 (5), 053902.10.1103/PhysRevFluids.3.053902Google Scholar
Theodorsen, T. 1952 Mechanisms of turbulence. In Proceedings of the 2nd Midwestern Conference on Fluid Mechanics, 1952.Google Scholar
Trefethen, L. N. 2005 Wave packet pseudomodes of variable coefficient differential operators. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 461, pp. 30993122. The Royal Society.Google Scholar
Trefethen, L. N. & Chapman, S. J. 2004 Wave packet pseudomodes of twisted Toeplitz matrices. Commun. Pure Appl. Maths 57 (9), 12331264.10.1002/cpa.20034Google Scholar
Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.Google Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.10.1126/science.261.5121.578Google Scholar
Vallée, O. & Soares, M. 2010 Airy Functions and Applications to Physics. World Scientific Publishing Company.10.1142/p709Google Scholar
Weideman, J. A. & Reddy, S. C. 2000 A Matlab differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.10.1145/365723.365727Google Scholar
Wu, J.-Z., Zhou, Y. & Wu, J.-M.1996 Reduced stress tensor and dissipation and the transport of Lamb vector. Tech. Rep. 96-21. ICASE.Google Scholar
Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA E5292E5299.10.1073/pnas.1704671114Google Scholar
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.10.1017/S002211209900467XGoogle Scholar