Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T06:22:22.810Z Has data issue: false hasContentIssue false

On the impact of the turbulent/non-turbulent interface on differential diffusion in a turbulent jet flow

Published online by Cambridge University Press:  03 August 2016

F. Hunger*
Affiliation:
Numerical Thermo-Fluid Dynamics, TU Bergakademie Freiberg, D-09599 Freiberg, Germany
M. Gauding
Affiliation:
Numerical Thermo-Fluid Dynamics, TU Bergakademie Freiberg, D-09599 Freiberg, Germany
C. Hasse
Affiliation:
Numerical Thermo-Fluid Dynamics, TU Bergakademie Freiberg, D-09599 Freiberg, Germany
*
Email address for correspondence: [email protected]

Abstract

The effect of differential diffusion of two passive scalars having Schmidt numbers of unity and 0.25, respectively, is investigated using direct numerical simulation of a temporally evolving jet. The objective of the research is twofold: (i) to compare the turbulent/non-turbulent (T/NT) interface position using the scalar criterion between the unity- and low-Schmidt-number scalar; and (ii) to determine the impact of the T/NT interface on differential diffusion. For the latter, the T/NT interface is detected using the vorticity criterion. To quantify the effect of differential diffusion, a normalised differential diffusion parameter is analysed, clearly showing the dominance of differential diffusion at the T/NT interface. A transport equation for the scalar differences is then evaluated, which shows that differential diffusion originates at the interface. Further, the separation between the passive scalars, arising due to differential diffusion, is studied using conventional and conditional statistics with respect to the interface distance. Since differential diffusion is known to be present at large and small scales, the connection between them is analysed using the scalar dissipation rate. Moreover, the physical mechanism responsible for the departure of the two scalars is analysed using the scalar gradient alignment, the ratio of the diffusive fluxes and by a transport equation for the scalar gradients.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashurst, Wm. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8), 23432353.Google Scholar
Bilger, R. W. 1977 Reaction rates in diffusion flames. Combust. Flame 30, 277284.CrossRefGoogle Scholar
Bilger, W. & Dibble, R. W. 1982 Differential molecular diffusion effects in turbulent mixing. Combust. Sci. Technol. 28 (3-4), 161172.CrossRefGoogle Scholar
Bisset, D. K., Hunt, J. C. R. & Rogers, M. M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.CrossRefGoogle Scholar
Brethouwer, G., Hunt, J. C. R. & Nieuwstadt, F. T. M. 2003 Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech. 474, 193225.Google Scholar
Brownell, C. J. & Su, L. K. 2008 Planar laser imaging of differential molecular diffusion in gas-phase turbulent jets. Phys. Fluids 20 (3), 035109.CrossRefGoogle Scholar
Cook, A. W., Cabot, W. & Miller, P. L. 2004 The mixing transition in Rayleigh–Taylor instability. J. Fluid Mech. 511, 333362.CrossRefGoogle Scholar
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22 (4), 469473.Google Scholar
Dibble, R. W. & Long, M. B. 2005 Investigation of differential diffusion in turbulent jet flows using planar laser Rayleigh scattering. Combust. Flame 143 (4), 644649.CrossRefGoogle Scholar
Donzis, D. A., Sreenivasan, K. R. & Yeung, P. K. 2005 Scalar dissipation rate and dissipative anomaly in isotropic turbulence. J. Fluid Mech. 532, 199216.Google Scholar
Gampert, M., Boschung, J., Hennig, F., Gauding, M. & Peters, N. 2014a The vorticity versus the scalar criterion for the detection of the turbulent/non-turbulent interface. J. Fluid Mech. 750, 578596.Google Scholar
Gampert, M., Kleinheinz, K., Peters, N. & Pitsch, H. 2014b Experimental and numerical study of the scalar turbulent/non-turbulent interface layer in a jet flow. Flow Turbul. Combust. 92 (1-2), 429449.Google Scholar
Kerstein, A. R. 1990 Linear-eddy modelling of turbulent transport. Part 3. Mixing and differential molecular diffusion in round jets. J. Fluid Mech. 216, 411435.CrossRefGoogle Scholar
Lavertu, T. M., Mydlarski, L. & Gaskin, S. J. 2008 Differential diffusion of high-Schmidt-number passive scalars in a turbulent jet. J. Fluid Mech. 612, 439475.Google Scholar
Lele, S. K. 1992 Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103 (1), 1642.Google Scholar
Maragkos, G., Rauwoens, P., Fauconnier, D. & Merci, B. 2014 Large eddy simulations of differential molecular diffusion in non-reacting turbulent jets of H2/CO2 mixing with air. Phys. Fluids 26 (2), 025102.CrossRefGoogle Scholar
Nilsen, V. & Kosály, G. 1997 Differentially diffusing scalars in turbulence. Phys. Fluids 9 (11), 33863397.Google Scholar
Obukhov, A. M. 1949 The local structure of atmospheric turbulence. Dokl. Akad. Nauk SSSR 67, 643646.Google Scholar
Prasad, R. R. & Sreenivasan, K. R. 1989 Scalar interfaces in digital images of turbulent flows. Exp. Fluids 7 (4), 259264.Google Scholar
Saylor, J. R. & Sreenivasan, K. R. 1998 Differential diffusion in low Reynolds number water jets. Phys. Fluids 10 (5), 11351146.CrossRefGoogle Scholar
da Silva, C. B., Hunt, J. C. R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.Google Scholar
Stanley, S. A., Sarkar, S. & Mellado, J. P. 2002 A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation. J. Fluid Mech. 450, 377407.CrossRefGoogle Scholar
Stephan, M. & Docter, J. 2015 JUQUEEN: IBM Blue Gene/Q® Supercomputer system at the Jülich supercomputing centre. J. Large-Scale Res. Facil. 1, A1.CrossRefGoogle Scholar
Taylor, G. I. 1938 The spectrum of turbulence. Proc. R. Soc. Lond. A 164 (919), 476490.Google Scholar
Tonini, S. & Cossali, G. E. 2015 A novel formulation of multi-component drop evaporation models for spray applications. Intl J. Therm. Sci. 89, 245253.CrossRefGoogle Scholar
Ulitsky, M., Vaithianathan, T. & Collins, L. R. 2002 A spectral study of differential diffusion of passive scalars in isotropic turbulence. J. Fluid Mech. 460, 138.Google Scholar
Watanabe, T., Naito, T., Sakai, Y., Nagata, K. & Ito, Y. 2015 Mixing and chemical reaction at high Schmidt number near turbulent/nonturbulent interface in planar liquid jet. Phys. Fluids 27 (3), 085109.Google Scholar
Yang, Y., Verzicco, R. & Lohse, D. 2016 From convection rolls to finger convection in double-diffusive turbulence. Proc. Natl Acad. Sci. USA 113 (1), 6973.Google Scholar
Yeung, P. K. 1996 Multi-scalar triadic interactions in differential diffusion with and without mean scalar gradients. J. Fluid Mech. 321, 235278.Google Scholar
Yeung, P. K., Sykes, M. C. & Vedula, P. 2000 Direct numerical simulation of differential diffusion with Schmidt numbers up to 4.0. Phys. Fluids 12 (6), 16011604.CrossRefGoogle Scholar
Zhong, J., Cai, X.-M. & Bloss, W. J. 2016 Coupling dynamics and chemistry in the air pollution modelling of street canyons: a review. Environ. Pollut. 214, 690704.CrossRefGoogle ScholarPubMed