Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-04T04:13:42.613Z Has data issue: false hasContentIssue false

Numerical study of a transitional synthetic jet in quiescent external flow

Published online by Cambridge University Press:  22 May 2007

RUPESH B. KOTAPATI
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
RAJAT MITTAL
Affiliation:
Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC 20052, USA
LOUIS N. CATTAFESTA III
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA

Abstract

The flow associated with a synthetic jet transitioning to turbulence in an otherwise quiescent external flow is examined using time-accurate three-dimensional numerical simulations. The incompressible Navier–Stokes solver uses a second-order accurate scheme for spatial discretization and a second-order semi-implicit fractional step method for time integration. The simulations are designed to model the experiments of C. S. Yao et al. (Proc. NASA LaRC Workshop, 2004) which have examined, in detail, the external evolution of a transitional synthetic jet in quiescent flow. Although the jet Reynolds and Stokes numbers in the simulations match with the experiment, a number of simplifications have been made in the synthetic jet actuator model adopted in the current simulations. These include a simpler representation of the cavity and slot geometry and diaphragm placement. Despite this, a reasonably good match with the experiments is obtained in the core of the jet and this indicates that for these jets, matching of these key non-dimensional parameters is sufficient to capture the critical features of the external jet flow. The computed results are analysed further to gain insight into the dynamics of the external as well as internal flow. The results indicate that near the jet exit plane, the flow field is dominated by the formation of counter-rotating spanwise vortex pairs that break down owing to the rapid growth of spanwise instabilities and transition to turbulence a short distance from the slot. Detailed analyses of the unsteady characteristics of the flow inside the jet cavity and slot provide insights that to date have not been available from experiments.

Type
Papers
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amitay, M., Honohan, A., Trautman, M. & Glezer, A. 1997 Modification of the aerodynamic characteristics of bluff bodies using fluidic actuators. AIAA Paper 97-2004.CrossRefGoogle Scholar
Amitay, M., Kibens, V., Parekh, D. & Glezer, A. 1999 The dynamics of flow reattachment over a thick airfoil controlled by synthetic jet actuators. AIAA Paper 99-1001.CrossRefGoogle Scholar
Andres, J. M. & Ingard, U. 1953 Acoustic streaming at high Reynolds numbers. J. Acoust. Soc. Am. 25, 928932.CrossRefGoogle Scholar
Crook, A., Sadri, A. M. & Wood, N. J. 1999 The development and implementation of synthetic jets for the control of separated flow. AIAA Paper 99-3176.CrossRefGoogle Scholar
Dong, H., Mittal, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.CrossRefGoogle Scholar
Gallas, Q. 2005 On the modeling and design of zero-net mass flux actuators. PhD thesis, University of Florida.CrossRefGoogle Scholar
Gallas, Q., Holman, R., Nishida, T., Carroll, B., Sheplak, M. & Cattafesta, L. 2003 a Lumped element modeling of piezoelectric-driven synthetic jet actuators. AIAA J. 41, 240247.CrossRefGoogle Scholar
Gallas, Q., Wang, G., Papila, M., Sheplak, M. & Cattafesta, L. 2003 b Optimization of synthetic jet actuators. AIAA Paper 2003-0635.CrossRefGoogle Scholar
Gallas, Q., Holman, R., Raju, R., Mittal, R., Sheplak, M. & Cattafesta, L. 2004 a Low dimensional modeling of zero-net mass-flux actuators. AIAA Paper 2004-2413.CrossRefGoogle Scholar
Gallas, Q., Mittal, R., Sheplak, M. & Cattafesta, L. 2004 b Case 1: Lumped element modeling of a zero-net mass flux actuator issuing into a quiescent medium. In Proc. NASA LaRC Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control, Williamsburg, Virginia, March 29–31.Google Scholar
Glezer, A. & Amitay, M. 2002 Synthetic jets. Annu. Rev. Fluid Mech. 34, 503532.CrossRefGoogle Scholar
Hinze, J. O. 1975 Turbulence, 2nd edn. McGraw-Hill.Google Scholar
Holman, R. 2006 An experimental investigation of flows from zero-net mass-flux actuators. PhD thesis, University of Florida.Google Scholar
Holman, R., Utturkar, Y., Mittal, R., Smith, B. L. & Cattafesta, L. 2005 Formation criterion for synthetic jets. AIAA J. 43, 21102116.CrossRefGoogle Scholar
Ingard, U. & Labate, S. 1950 Acoustic circulation effects and the nonlinear impedance of orifices. J. Acoust. Soc. Am. 22, 211218.CrossRefGoogle Scholar
James, R. D., Jacobs, J. W. & Glezer, A. 1996 A round turbulent jet produced by an oscillating diaphragm. Phys. Fluids. 8, 24842495.CrossRefGoogle Scholar
Kaltenbach, H.-J., Fatica, M., Mittal, R., Lund, T. S. & Moin, P. 1999 Study of flow in a planar asymmetric diffuser using large-eddy simulation. J. Fluid Mech. 390, 151186.CrossRefGoogle Scholar
Kral, L. D., Donovan, J. F., Cain, A. B. & Cary, A. W. 1997 Numerical simulation of synthetic jet actuators. AIAA Paper 97-1824.CrossRefGoogle Scholar
Lebedeva, I. V. 1980 Experimental study of acoustic streaming in the vicinity of orifices. Sov. Phys. Acoust. 26, 331333.Google Scholar
Lee, C. Y. & Goldstein, D. B. 2001 DNS of microjets for turbulent boundary layer control. AIAA Paper 2001-1013.CrossRefGoogle Scholar
Lee, C. Y. & Goldstein, D. B. 2002 Two-dimensional synthetic jet simulation. AIAA J. 40, 510516.CrossRefGoogle Scholar
Leonard, B. P. 1979 A stable and accurate convection modeling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Engng. 19, 5998.CrossRefGoogle Scholar
Loudon, C. & Tordesillas, A. 1998 The use of the dimensionless Womersley number to characterize the unsteady nature of internal flow. J. Theor. Biol. 191, 6378.CrossRefGoogle ScholarPubMed
Mallinson, S. G., Hong, G. & Reizes, A. J. 1999 Some characteristics of synthetic jets. AIAA Paper 99-3651.CrossRefGoogle Scholar
Mednikov, E. P. & Novitskii, B. G. 1975 Experimental study of intense acoustic streaming. Sov. Phys. Acoust. 21, 152154.Google Scholar
Meissner, A. 1926 Uber piezo-elektrische kristalle bei hoch-frequenz. Z. Tekh. Fiz 7, 585.Google Scholar
Mittal, R. 2000 Response of the sphere wake to freestream fluctuations. Theoret. Comput. Fluid Dyn. 13, 397419.CrossRefGoogle Scholar
Mittal, R. & Balachandar, S. 1997 On the inclusion of three-dimensional effects in simulations of two-dimensional bluff-body wake flows. In Proc. 1997 ASME Fluids Engng. Div. Summer Meeting, Vancouver, Canada.Google Scholar
Mittal, R., Rampunggoon, R. & Udaykumar, H. S. 2001 Interaction of a synthetic jet with a flat plate boundary layer. AIAA Paper 2001-2773.CrossRefGoogle Scholar
Mittal, R., Simmons, S. P. & Najjar, F. 2003 Numerical study of pulsatile flow in a constricted channel. J. Fluid Mech. 485, 337378.CrossRefGoogle Scholar
Najjar, F. M. & Mittal, R. 2003 Simulations of complex flows and fluid-structue interaction problems on fixed Cartesian grids. In Proc. FEDSM'03, 4th ASME–JSME Joint Fluids Engng Conf., Honolulu, Hawaii, pp. 184–196.Google Scholar
Panton, R. L. 1996 Incompressible Flow, 2nd edn. John Wiley.Google Scholar
Raju, R., Mittal, R., Gallas, Q & Cattafesta, L. 2005 Scaling of vorticity flux and entrance length effects in zero-net mass-flux devices. AIAA Paper 2005-4751.CrossRefGoogle Scholar
Rathnasingham, R. & Breuer, K. S. 1997 System identification and control of a turbulent boundary layer. Phys. Fluids A. 9, 18671869.CrossRefGoogle Scholar
Rathnasingham, R. & Breuer, K. S. 2003 Active control of turbulent boundary layers. J. Fluid Mech. 495, 209233.CrossRefGoogle Scholar
Ravi, B. R., Mittal, R. & Najjar, F. M. 2004 Study of three-dimensional synthetic jet flowfields using direct numerical simulations. AIAA Paper 2004-0091.Google Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263288.CrossRefGoogle Scholar
Rizzetta, D. P., Visbal, M. R. & Stanek, M. J. 1999 Numerical investigation of synthetic-jet flowfields. AIAA J. 37, 919927.CrossRefGoogle Scholar
Rumsey, C. L., Gatski, T. B., Sellers, W. L., Vatsa, V. N. & Viken, S. A. 2004 Summary of the 2004 CFD validation workshop on synthetic jets and turbulent separation control. AIAA Paper 2004-2217.CrossRefGoogle Scholar
Sheen, S. H., Lawrence, W. P. & Raptis, A. C. 1989 Cavitation-controlled ultrasonic agitator. In Proc. IEEE Ultrasonics Symp. vol. 1, pp. 653–656.Google Scholar
Smith, B. & Swift, G. 2001 Synthetic jets at large Reynolds number and comparison to continous jets. AIAA Paper 2001-3030.CrossRefGoogle Scholar
Smith, B. L. & Glezer, A. 1998 The formation and evolution of synthetic jets. Phys. Fluids. 10, 22812297.CrossRefGoogle Scholar
Smith, B. L. & Glezer, A. 2002 Jet vectoring using synthetic jets. J. Fluid Mech. 458, 134.CrossRefGoogle Scholar
Smith, D. & Glezer, A. 1997 Vectoring and small-scale motions effected in free shear flows using synthetic jet actuators. AIAA Paper 97-0213.CrossRefGoogle Scholar
Smith, D., Amitay, M., Kibens, V., Parekh, D. & Glezer, A. 1998 Modification of lifting body aerodynamics using synthetic jet actuators. AIAA Paper 98-0209.CrossRefGoogle Scholar
Soria, J. & Cantwell, B. J. 1993 Identification and classification of topological structures in free shear flows. In Eddy Structure Identification in Free Turbulent Shear Flows (ed. Bonnet, J. P. & Glauser, M. N.), pp. 379390. Kluwer.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence, 1st edn. The MIT Press.CrossRefGoogle Scholar
Udaykumar, H. S., Mittal, R., Rampunggoon, P. & Khanna, A. 2001 A sharp interface Cartesian grid method for simulating flows with complex moving boundaries. J. Comput. Phys. 174, 345380.CrossRefGoogle Scholar
Utturkar, Y. & Mittal, R. 2002 Senitivity of synthetic jets to the design of the jet cavity. AIAA Paper 2002-0124.CrossRefGoogle Scholar
Utturkar, Y., Holman, R., Mittal, R., Carroll, B., Sheplak, M. & Cattafesta, L. 2003 A jet formation criterion for synthetic jet actuators. AIAA Paper 2003-0636.CrossRefGoogle Scholar
White, F. M. 1991 Viscous Flow, 2nd edn. McGraw-Hill.Google Scholar
Winter, D. C. & Nerem, R. M. 1984 Turbulence in pulsatile flows. Ann. Biomed. Engng. 12, 357369.CrossRefGoogle ScholarPubMed
Wygnanski, I. 1997 Boundary layer and flow control by periodic addition of momentum. AIAA Paper 97-2117.CrossRefGoogle Scholar
Yao, C. S., Chen, F. J., Neuhart, D. & Harris, J. 2004 a Synthetic jet flow database for CFD validation. AIAA Paper 2004-2218.CrossRefGoogle Scholar
Yao, C. S., Chen, F. J., Neuhart, D. & Harris, J. 2004 b Synthetic jets in quiescent air. In Proc. NASA LaRC Workshop on CFD Validation of Synthetic Jets and Turbulent Separation Control, Williamsburg, Virginia, March 29–31.Google Scholar
Ye, T., Mittal, R., Udaykumar, H. S. & Shyy, W. 1999 An accurate Cartesian grid method for viscous incompressible flows with complex immersed boundaries. J. Comput. Phys. 156, 209240.CrossRefGoogle Scholar