Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-05T09:16:43.915Z Has data issue: false hasContentIssue false

Numerical solutions for the compressible flow in a rapidly rotating cylinder

Published online by Cambridge University Press:  20 April 2006

G. J. Dickinson
Affiliation:
Technical Department, BNFL, Capenhurst Works, Chester CH1 6ER
I. P. Jones
Affiliation:
Computer Science and Systems Division, A.E.R.E. Harwell, Didcot, Oxon OX11 ORA

Abstract

Numerical results are presented for the flow field in a rapidly rotating gas. These results are compared with the predictions of asymptotic theories, particularly those of Brouwers concerning viscous effects. The comparison shows that the effect of the viscous core is important and the extent of the different flow regimes is well predicted by the theory of Brouwers.

Type
Research Article
Copyright
© 1981 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bark, F. H. & Bark, T. H. 1976 Vertical boundary layers in a rotating gas. J. Fluid Mech. 78, 749.Google Scholar
Brouwers, J. J. H. 1976 On the motion of a compressible fluid in a rotating cylinder. Ph.D. thesis, Twente Institute of Technology, Enschede, The Netherlands.
Brouwers, J. J. H. 1978a On the compressible flow in a gas centrifuge and its effect on the maximum separative power. Nuc. Tech. 39, 311.Google Scholar
Brouwers, J. J. H. 1978b On compressible flow in a rotating cylinder. J. Eng. Maths. 12, 265.Google Scholar
Duff, I. S. 1977 MA28A — A set of Fortran subroutines for sparse unsymmetric linear equations. AERE-R. 8730.
Durivault, J. & Louvet, P. 1976 Étude de la couche de Stewartson compressible dans une centrifugeuse à contrecourant thermique. C.R. Acad. Sci. Séance 283, 79.Google Scholar
Kálnay de Rivas, E. 1972 On the use of non-uniform grids in finite difference equations. J. Comp. Phys. 10, 202.Google Scholar
Louvet, P. & Cortet, C. 1979 Discussion of various flow calculation methods in high-speed centrifuges. Proc. 3rd Workshop on Gases in Strong Rotation (ed. G. B. Scuricini). Rome: CNEN.
Matsuda, T., Hashimoto, K., Takeda, H. 1976 Thermally driven flow in a gas centrifuge with insulated side walls. J. Fluid Mech. 73, 389.Google Scholar
Mikami, H. 1973 Thermally induced flow in a gas centrifuge. J. Nucl. Sci. Tech. 10, 580.Google Scholar
Nakayama, W. & Usui, S. 1974 Flow in a rotating cylinder of a gas centrifuge. J. Nucl. Sci. Tech. 11, 242.Google Scholar
Orsag, S. A. & Israeli, M. 1974 Numerical simulation of viscous incompressible flows. Ann. Rev. Fluid Mech. 6, 281.Google Scholar
Parker, H. M. & Mayo, T. T. 1963 Counter-current flow in a semi-infinite gas centrifuge. Preliminary results. Res. Lab. Engng Sci., Univ. Virginia, Rep. no. E1-4422-279-630.Google Scholar
Rätz, E. 1978 Uranium isotope separation in the gas centrifuge. Von Karman Institute for Fluid Dynamics. Lecture series 1978 Rhode St Genèse, Belgium.
Roache, P. J. 1972 Computational Fluid Dynamics. Albuquerque. New Mexico: Hermosa.
Sakurai, T. & Matsuda, T. 1974 Gas dynamics of a centrifugal machine. J. Fluid Mech. 62, 727.Google Scholar
Soubbaramayer 1979 Centrifugation in Uranium Enrichment. Topics in Appl. Phys. vol. 35 (ed. S. Villani). Springer.
Steenbeck, M. 1958 Erzeugung einer selbstkaskadierenden Axialströmung in einer langen Ultrazentrifuge zur Isotopentrennung. Kernenergie 1, 921.Google Scholar
Stewartson, K. 1957 On almost rigid rotations. J. Fluid Mech. 3, 17.Google Scholar