Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T06:55:21.207Z Has data issue: false hasContentIssue false

Numerical simulation of the absolutely and convectively unstable wake

Published online by Cambridge University Press:  26 April 2006

K. Hannemann
Affiliation:
Institute for Theoretical Fluid Mechanics, DFVLR-AVA Göttingen, FRG
H. Oertel Jr
Affiliation:
Institute for Theoretical Fluid Mechanics, DFVLR-AVA Göttingen, FRG

Abstract

The development of the wake behind a flat plate at a supercritical Reynolds number (Re = 200, based on the plate thickness and free-stream velocity) is simulated numerically by solving the two-dimensional unsteady Navier-Stokes equations with a finite-difference Galerkin method. The intermediate quasi-steady state of the wake development is investigated with an Orr-Sommerfeld analysis for complex frequencies and wavenumbers. Based on this linear, local stability analysis it can be shown that the quasi-steady state can be divided into regions of local absolute and local convective instability. One goal of this work is to determine the validity of the linear, local stability theory by comparing the predictions of the Orr-Sommerfeld analysis to the results of a numerical wake simulation. Based on this comparison, for the investigated flow field, the frequency selection mechanisms recently proposed by several authors are discussed. Base bleed is applied in the numerical simulation of the wake as a control parameter, following the well-known experimental result that sufficient base bleed reduces the strength of the vortex street (see e.g. Wood 1964). It can be shown that from a critical base-bleed ratio, disturbances grow no longer in time but only in space, indicating a change of the global stability characteristics. In addition the linear, local stability analysis is used to investigate to what extent this global transition can be described.

Type
Research Article
Copyright
© 1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bearman, P. W.: 1967 The effect of base bleed on the flow behind a two-dimensional model with a blunt trailing edge. Aero. Quart. 18, 207224.Google Scholar
Bechert, D. W.: 1985 Excitation of instability waves. Z. Flugwiss. Weltraumforsch. 9, 356361.Google Scholar
Bers, A.: 1975 Linear waves and instabilities. In Physique des Plasmas (ed. C. DeWitt & J. Peyraud), pp. 117213. Gordon and Breach.
Betchov, R. & Criminale, W. O., 1966 Spatial instability of the inviscid jet and wake. Phys. Fluids 9, 359362.Google Scholar
Braza, M., Chassaing, P. & Ha Minh, H. 1986 Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder. J. Fluid Mech. 165, 79130.Google Scholar
Briggs, R. J.: 1964 Electron-stream interaction with plasmas. Research Monograph 29. MIT Press.
Chomaz, J. M., Huerre, P., Redekopp, L. G.: 1987 Models of hydrodynamic resonances in separated shear flows. In Proc. 6th Symp. on Turbulent Shear flows, Toulouse, France, Sept. 7–9.
Davis, R. W. & Moore, E. F., 1982 A numerical study of vortex shedding from rectangles. J. Fluid Mech. 116, 475506.Google Scholar
Drazin, P. G. & Reid, W. H., 1981 Hydrodynamic Stability. Cambridge University Press.
Gaster, M.: 1968 Growth of disturbances in both space and time. Phys. Fluids 11, 723727.Google Scholar
Gentzsch, W. & Schwamborn, D., 1985 Das Problem der numerischen Diffusion bei der Lösung von Modellgleichungen der Strömungsmechanik. DFVLR IB 221–85 A15.Google Scholar
Gottlieb, D., Hussaini, M. Y. & Orszag, S. A., 1984 Theory and applications of spectral methods. In Spectral Methods, for Partial Differential Equations (ed. R. G. Voigt et al.), Philadelphia.
Hannemann, K.: 1988 Numerische Simulation und Stabilitätstheoretische Untersuchung des absolut und konvektiv instabilen Nachlaufs. DFVLR FB 88–09.Google Scholar
Hannemann, K., Lynn, T. B. & Strykowski, P. J., 1986 Experimental investigation of the wake behind a flat plate with and without the influence of base bleed. DFVLR IB 221–86 A26.Google Scholar
Hannemann, K. & Oertel, H., 1986 Das Nachlaufstabilitätsproblem. DFVLR IB 221–86 A05.Google Scholar
Hannemann, K. & Oertel, H., 1987 Linear stability analysis and nonlinear numerical simulation of wake flows. In Proc. Intl Conf. on Fluid Mechanics, Beijing, China, July 1–4, pp. 667672.Google Scholar
Huerre, P.: 1985 Spatio–temporal instabilities in closed and open flows. In Proc. Intl Workshop on Instabilities and non-Equilibrium structures, Valparaiso, Chile, December 16–21.
Huerre, P. & Monkewitz, P. A., 1985 Absolute and convective instabilities in free shear layers. J. Fluid Mech. 159, 151168.Google Scholar
Jackson, C. P.: 1987 A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182, 2345.Google Scholar
Khosla, P. K. & Rubin, S. G., 1981 A conjugate gradient iterative method. Computers and Fluids 9, 109121.Google Scholar
Koch, W.: 1983 Organized structures in wakes and jets – an aerodynamic resonance phenomenon? In Turbulent Shear Flows 4 (ed. L. J. S. Bradbury, F. Durst, B. E. Launder, F. W. Schmidt & J. H. Whitelaw). Springer.
Koch, W.: 1985 Local instability characteristics and frequency determination of self-excited wake flows. J. Sound Vib. 99, 5383.Google Scholar
Koch, W.: 1986 Direct resonances in Orr–Sommerfeld problems. Acta Mech. 58, 1129.Google Scholar
Kovasznay, L. S. G.: 1949 Hot-wire investigation of the wake behind cylinders at low Reynolds numbers. Proc. R. Soc. Lond. A A198, 174190.Google Scholar
Landau, L. D. & Liftshitz, E. M., 1959 Fluid Mechanics, vol. 6. Pergamon.
Laurien, E.: 1986 Numerische Simulation zur aktiven Beeinflussung des laminar-turbulenten Übergangs in der Plattengrenzschichströmung. DFVLR-FB 86–05.Google Scholar
Mattingly, G. E. & Criminale, W. O., 1972 The stability of an incompressible two-dimensional wake. J. Fluid Mech. 51, 233272.Google Scholar
Michel, G. W. & Kost, F. H., 1982 The effect of coolant flow on the efficiency of a transonic HP turbine profile suitable for a small engine. American Society of Mechanical Engineers 82-GT-86.Google Scholar
Monkewitz, P. A.: 1988 The absolute and convective nature of instability in two-dimensional wakes at low Reynolds numbers. Phys. Fluids 31, 9991006.Google Scholar
Monkewitz, P. A. & Nguyen, L. N., 1987 Absolute instability in the near-wake of two-dimensional bluff bodies. J. Fluids and Structures 1, 165184.Google Scholar
Monkewitz, P. A. & Sohn, K. D., 1986 Absolute instability in hot jets and their control. AIAA Paper 86-1882.Google Scholar
Nash, J. F., Quincey, V. G. & Callinan, J., 1963 Experiments on two-dimensional base flow at subsonic and transonic speeds. Aero. Res. Counc. R. & M. 3427.Google Scholar
Nguyen, L. N.: 1986 Frequency selection in jets and wakes. M. S. thesis, University of California, Los Angeles.
Pieerehumbert, R. T.: 1984 Local and global baroclinic instability of zonally varying flow. J. Atmos. Sci. 41, 21412162.Google Scholar
Provansal, M., Mathis, C. & Boyer, L., 1987 Bénard–von Kármán instability: transient and forced regimes. J. Fluid Mech. 182, 122.Google Scholar
Roshko, A.: 1954 On the drag and shedding frequency of two-dimensional bluff bodies. NACA TN 3169.Google Scholar
Sato, H. & Kuriki, K., 1961 The mechanism of transition in the wake of a thin flat plate placed parallel to a uniform flow. J. Fluid Mech. 11, 321352.Google Scholar
Schlichting, H.: 1982 Grenzschicht-Theorie 8th edn. Auflage, Karlsruhe: Braun.
Schwarz, H. R., Rutischauser, H. & Stiefel, E., 1968 Matrizen-Numerik. Stuttgart: B. G. Teubner.
Stephens, A. B., Bell, J. B., Solomon, J. M. & Hackerman, L. B., 1984 A finite difference Galerkin formulation for the incompressible Navier–Stokes equations. J. Comp. Phys. 53, 152172.Google Scholar
Strykowski, P. J.: 1986 The control of absolutely and convectively unstable shear flows. Doctoral thesis, Yale University, New Haven, CT.
Strykowski, P. J. & Sreenivasan, K. R., 1985 The control of transitional flows. AIAA-paper 85-0559 (presented at AIAA Shear Flows Control Conference, March 12–14, Boulder, Co).Google Scholar
Stuart, J. T.: 1960 On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. J. Fluid Mech. 9, 353370.Google Scholar
Sturrock, P. A.: 1958 Kinematics of growing waves. Phys. Rev. 112, 14881503.Google Scholar
Sun, Y. C., Shen, S. F. & Zhu, Z., 1988 A numerical simulation of the development behind a circular cylinder started from rest and a criterion for investigating unsteady separating flows. Acta Mech. (to appear).Google Scholar
Tanner, M.: 1975 Reduction of base drag. Prog. Aerospace Sci. 16, 369384.Google Scholar
Triantafyllou, G. S., Triantafyllou, M. S. & Chryssostomidis, C., 1986 On the formation of vortex streets behind stationary cylinders. J. Fluid Mech. 170, 461477.Google Scholar
Twiss, R. Q.: 1951 On oscillations in electron streams. Proc. Phys. Soc. Lond. B B64, 654669.Google Scholar
Twiss, R. Q.: 1952 Propagation in electron-ion streams. Phys. Rev. 88, 13921407.Google Scholar
Wood, C. J.: 1964 The effect of base bleed on a periodic wake. J. R. Aeronaut. Soc. 68, 477482.Google Scholar
Wood, C. J.: 1967 Visualization of an incompressible wake with base bleed. J. Fluid Mech. 29, 259272.Google Scholar