Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T18:18:22.523Z Has data issue: false hasContentIssue false

Numerical investigation of the compressible flow past an aerofoil

Published online by Cambridge University Press:  17 December 2009

LI-WEI CHEN
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
CHANG-YUE XU
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
XI-YUN LU*
Affiliation:
Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
*
Email address for correspondence: [email protected]

Abstract

Numerical investigation of the compressible flow past an 18% thick circular-arc aerofoil was carried out using detached-eddy simulation for a free-stream Mach number M = 0.76 and a Reynolds number Re = 1.1 × 107. Results have been validated carefully against experimental data. Various fundamental mechanisms dictating the intricate flow phenomena, including moving shock wave behaviours, turbulent boundary layer characteristics, kinematics of coherent structures and dynamical processes in flow evolution, have been studied systematically. A feedback model is developed to predict the self-sustained shock wave motions repeated alternately along the upper and lower surfaces of the aerofoil, which is a key issue associated with the complex flow phenomena. Based on the moving shock wave characteristics, three typical flow regimes are classified as attached boundary layer, moving shock wave/turbulent boundary layer interaction and intermittent boundary layer separation. The turbulent statistical quantities have been analysed in detail, and different behaviours are found in the three flow regimes. Some quantities, e.g. pressure-dilatation correlation and dilatational dissipation, have exhibited that the compressibility effect is enhanced because of the shock wave/boundary layer interaction. Further, the kinematics of coherent vortical structures and the dynamical processes in flow evolution are analysed. The speed of downstream-propagating pressure waves in the separated boundary layer is consistent with the convection speed of the coherent vortical structures. The multi-layer structures of the separated shear layer and the moving shock wave are reasonably captured using the instantaneous Lamb vector divergence and curl, and the underlying dynamical processes are clarified. In addition, the proper orthogonal decomposition analysis of the fluctuating pressure field illustrates that the dominated modes are associated with the moving shock waves and the separated shear layers in the trailing-edge region. The results obtained in this study provide physical insight into the understanding of the mechanisms relevant to this complex flow.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R. J. & Moin, P. 1988 Stochastic estimation of organized turbulent structure: homogeneous shear flow. J. Fluid Mech. 190, 531559.CrossRefGoogle Scholar
Andreopoulos, Y., Agui, J. H. & Briassulis, G. 2000 Shock wave-turbulence interactions. Annu. Rev. Fluid Mech. 32, 309345.Google Scholar
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25, 539575.Google Scholar
Blake, W. K. 1986 Mechanics of Flow-Induced Sound and Vibration II. Academic.Google Scholar
Bourguet, R., Braza, M. & Dervieux, A. 2007 Reduced-order modelling for unsteady transonic flows around an airfoil. Phys. Fluids 19, 111701.Google Scholar
Bradshaw, P. 1967 The turbulence structure of equilibrium boundary layers. J. Fluid Mech. 29, 625645.CrossRefGoogle Scholar
Bradshaw, P. 1977 Compressible turbulent shear layers. Annu. Rev. Fluid Mech. 9, 3354.Google Scholar
Chakraborty, P., Balachandar, S. & Adrian, R. J. 2005 On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189214.CrossRefGoogle Scholar
Crouch, J. D., Garbaruk, A. & Magidov, D. 2007 Predicting the onset of flow unsteadiness based on global instability. J. Comput. Phys. 224, 924940.Google Scholar
Crouch, J. D., Garbaruk, A., Magidov, D. & Travin, A. 2009 Origin of transonic buffet on aerofoils. J. Fluid Mech. 628, 357369.Google Scholar
Deane, A. E., Kevrekidis, I. G., Karniadakis, G. E. & Orszag, S. A. 1991 Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders. Phys. Fluids A 3, 23372354.Google Scholar
Deck, S. 2005 Numerical simulation of transonic buffet over a supercritical airfoil. AIAA J. 43, 15561566.CrossRefGoogle Scholar
Garnier, E., Sagaut, P. & Deville, M. 2002 Large eddy simulation of shock/homogeneous turbulence interaction. Comput. Fluids 31, 245268.CrossRefGoogle Scholar
Girard, S. 1999 Etude des Charges Latérales dans une Tuyére Supersonique Surdétendue. PhD thesis, Université de Poitiers, Poitiers, France.Google Scholar
Hamman, C. W., Klewicki, J. C. & Kirby, R. M. 2008 On the Lamb vector divergence in Navier–Stokes flows. J. Fluid Mech. 610, 261284.Google Scholar
Harsha, P. T. & Lee, S. C. 1970 Correlation between turbulent shear stress and turbulent kinetic energy. AIAA J. 8, 15081510.Google Scholar
Heller, H. & Delfs, J. 1996 Cavity pressure oscillations: the generating mechanism visualized. J. Sound Vib. 196, 248252.Google Scholar
Herrin, J. L. & Dutton, J. C. 1997 The turbulence structure of a reattaching axisymmetric compressible free shear layer. Phys. Fluids 9, 35023512.Google Scholar
Hill, D. J., Pantano, C. & Pullin, D. I. 2006 Large-eddy simulation and multiscale modelling of a Richtmyer–Meshkov instability with reshock. J. Fluid Mech. 557, 2961.Google Scholar
Ho, C. M. & Nosseir, N. S. 1981 Dynamics of an impinging jet. Part 1. The feedback phenomenon. J. Fluid Mech. 105, 119142.Google Scholar
Howe, M. S. 1975 Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71, 625673.Google Scholar
Jacquin, L., Cambon, C. & Blin, E. 1993 Turbulence amplification by a shock wave and rapid distortion theory. Phys. Fluids A 5, 25392550.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Kawai, S. & Fujii, K. 2005 Computational study of supersonic base flow using hybrid turbulence methodology. AIAA J. 43, 12651275.Google Scholar
Larchevêque, L., Sagaut, P., Mary, I. & Labbé, O. 2003 Large-eddy simulation of a compressible flow past a deep cavity. Phys. Fluids 15, 193210.Google Scholar
Lee, B. H. K. 1990 Oscillatory shock motion caused by transonic shock boundary-layer interaction. AIAA J. 28, 942944.CrossRefGoogle Scholar
Lee, B. H. K. 2001 Self-sustained shock oscillations on airfoils at transonic speeds. Prog. Aerosp. Sci. 37, 147196.CrossRefGoogle Scholar
Lee, B. H. K., Murty, H. & Jiang, H. 1994 Role of Kutta waves on oscillatory shock motion on an airfoil. AIAA J. 32, 789796.CrossRefGoogle Scholar
Lee, S., Lele, S. K. & Moin, P. 1997 Interaction of isotropic turbulence with shock waves: effect of shock strength. J. Fluid Mech. 340, 225247.CrossRefGoogle Scholar
Lele, S. K. 1992 Shock-jump relations in a turbulent flow. Phys. Fluid A 4, 29002905.CrossRefGoogle Scholar
Lele, S. K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26, 211254.Google Scholar
Levy, L. L. 1978 Experimental and computational steady and unsteady transonic flows about a thick airfoil. AIAA J. 16, 564572.CrossRefGoogle Scholar
Lighthill, M. J. 1952 On sound generated aerodynamically. Part I. General theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Loginov, M. S., Adams, N. A. & Zheltovodov, A. A. 2006 Large-eddy simulation of shock-wave/turbulent-boundary-layer interaction. J. Fluid Mech. 565, 135169.Google Scholar
Lu, X. Y., Wang, S. W., Sung, H. G., Hsieh, S. Y. & Yang, V. 2005 Large-eddy simulations of turbulent swirling flows injected into a bump chamber. J. Fluid Mech. 527, 171195.CrossRefGoogle Scholar
Lumley, J. L. 1967 Rational approach to relations between motions of differing scales in turbulent flows. Phys. Fluids 10, 14051408.CrossRefGoogle Scholar
Lyn, D. A., Einav, S., Rodi, W. & Park, J.-H. 1995 A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder. J. Fluid Mech. 304, 285319.Google Scholar
Marvin, J. G., Levy, L. L. & Seegmiller, H. L. 1980 Turbulence modelling for unsteady transonic flows. AIAA J. 18, 489496.CrossRefGoogle Scholar
Mary, I. & Sagaut, P. 2002 Large eddy simulation of flow around an airfoil near stall. AIAA J. 40, 11391145.Google Scholar
McDevitt, J. B. 1979 Supercritical flow about a thick circular-arc airfoil. NASA Tech. Mem. 78549.Google Scholar
McDevitt, J. B., Levy, L. L. & Deiwert, G. S. 1976 Transonic flow about a thick circular-arc airfoil. AIAA J. 14, 606613.Google Scholar
McGrath, B. E. & Simpson, R. L. 1987 Some features of surface pressure fluctuations in turbulent boundary layers with zero and favourable pressure gradients. Tech Rep. NASA CR-4051. NASA.Google Scholar
Na, Y. & Moin, P. 1998 The structure of wall-pressure fluctuations in turbulent boundary layers with adverse pressure gradient and separation. J. Fluid Mech. 377, 347373.Google Scholar
Nikitin, N. V., Nicoud, F., Wasistho, B., Squires, K. D. & Spalart, P. R. 2000 An approach to wall modelling in large-eddy simulations. Phys. Fluids 12, 16291632.Google Scholar
Panton, R. L. & Linebarger, J. H. 1974 Wall pressure spectra calculations for equilibrium boundary layers. J. Fluid Mech. 65, 261287.Google Scholar
Patel, V. C., Rodi, W. & Scheuerer, G. 1985 Turbulence models for near-wall and low Reynolds number flows: a review. AIAA J. 23, 13081319.Google Scholar
Pirozzoli, S. & Grasso, F. 2006 Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M = 2.25. Phys. Fluids 18, 065113.CrossRefGoogle Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Ribner, H. S. 1953 Convection of a pattern of vorticity through a shock wave. Tech Rep. NACA TN-2864. NACA.Google Scholar
Ribner, H. S. 1954 Shock-turbulence interaction and the generation of noise. Tech Rep. NACA TN-3255. NACAGoogle Scholar
Ribner, H. S. 1987 Spectra of noise and amplified turbulence emanating from shock-turbulence interaction. AIAA J. 25, 436442.Google Scholar
Ringuette, M. J., Wu, M. & Martín, M. P. 2008 Coherent structures in direct numerical simulation of turbulent boundary layers at Mach 3. J. Fluid Mech. 594, 5969.Google Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layers. Annu. Rev. Fluid Mech. 23, 601639.Google Scholar
Rumsey, C. L., Sanetrik, M. D., Biedron, R. T., Melson, N. D. & Parlette, E. B. 1996 Efficiency and accuracy of time-accurate turbulent Navier–Stokes computations. Comput. Fluids 25, 217236.Google Scholar
Sagaut, P. 2002 Large-Eddy Simulation for Incompressible Flows. Springer.Google Scholar
Sagaut, P., Deck, S. & Terracol, M. 2006 Multiscale and Multiresolution Approaches in Turbulence. Imperial College Press.Google Scholar
Sarkar, S. 1992 The pressure-dilatation correlation in compressible flows. Phys. Fluids A 4, 26742682.CrossRefGoogle Scholar
Sarkar, S., Erlebacher, G., Hussaini, M. Y. & Kreiss, H. O. 1991 The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.CrossRefGoogle Scholar
Shur, M. L., Spalart, P. R., Strelets, M. & Travin, A. 1999 Detached-eddy simulation of an airfoil at high angle of attack. In Fourth International Symposium on Engineering Turbulence Modelling and Measurements (ed. Rodi, W. & Laurence, D.) pp. 669678. Elsevier.Google Scholar
Shyy, W. & Krishnamurty, V. S. 1997 Compressible effects in modelling complex turbulent flows. Prog. Aerosp. Sci. 33, 587645.CrossRefGoogle Scholar
Simon, F., Deck, S., Guillen, P., Sagaut, P. & Merlen, A. 2007 Numerical simulation of the compressible mixing layer past an axisymmetric trailing edge. J. Fluid Mech. 591, 215253.Google Scholar
Simpson, R. L., Ghodbane, M. & McGrath, B. E. 1987 Surface pressure fluctuations in a separating turbulent boundary layer. J. Fluid Mech. 177, 167186.Google Scholar
Smits, A. J. & Dussauge, J. P. 1996 Turbulent Shear Layers in Supersonic Flow. American Institute of Physics.Google Scholar
Spalart, P. R. 2001 Young-person's guide to detached eddy simulation grids. Tech Rep. NACA CR-2001 211032. NACA.Google Scholar
Spalart, P. R. 2009 Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181202.Google Scholar
Spalart, P. R. & Allmaras, S. R. 1992 A one-equation turbulence model for aerodynamic flows. AIAA paper 92-0439. AIAA.Google Scholar
Spalart, P. R., Jou, W. H., Strelets, M. & Allmaras, S. R. 1997 Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach. In Proceedings of the First AFOSR International Conference on DNS/LES, Ruston, LA.Google Scholar
Speziale, C. G., Abid, R. & Anderson, E. C. 1992 Critical evaluation of two-equation models for near-wall turbulence. AIAA J. 30, 324331.Google Scholar
Teramoto, S. 2005 Large-eddy simulation of transitional boundary layer with impinging shock wave. AIAA J. 43, 23542363.Google Scholar
Tijdeman, H. 1977 Investigation of the transonic flow around oscillating airfoils. Tech Rep. NLR TR 77090U. National Aerospace Laboratory, The Netherlands.Google Scholar
Tijdeman, H. & Seebass, R. 1980 Transonic flow past oscillating airfoils. Annu. Rev. Fluid Mech. 12, 181222.Google Scholar
Truesdell, C. 1954 The Kinematics of Vorticity. Indiana University Press.Google Scholar
Vreman, B., Kuerten, H. & Geurts, B. 1995 Shocks in direct numerical simulation of the confined three-dimensional mixing layer. Phys. Fluids 7, 21052107.Google Scholar
Wang, M., Freund, J. B. & Lele, S. K. 2006 Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38, 483512.Google Scholar
Wang, M. & Moin, P. 2000 Computation of trailing-edge flow and noise using large-eddy simulation. AIAA J. 38, 22012209.Google Scholar
Wang, S. W., Hsieh, S. Y. & Yang, V. 2005 Unsteady flow evolution in swirl injector with radial entry. Part I. Stationary conditions. Phys. Fluids 17, 045106.Google Scholar
Wang, S. W., Yang, V., Hsiao, G., Hsieh, S. Y. & Mongia, H. C. 2007 Large-eddy simulations of gas-turbine swirl injector flow dynamics. J. Fluid Mech. 583, 99122.Google Scholar
Wu, J. Z., Ma, H. Y. & Zhou, M. D. 2006 Vorticity and Vortex Dynamics. Springer.Google Scholar
Xiao, Q., Tsai, H. M. & Liu, F. 2003 Computation of shock induced separated flow with a lagged k–ω turbulence model. AIAA paper 2003-3464. AIAA.CrossRefGoogle Scholar
Xiao, Q., Tsai, H. M. & Liu, F. 2006 Numerical study of transonic buffet on a supercritical airfoil. AIAA J. 44, 620628.Google Scholar
Xu, C. Y., Chen, L. W. & Lu, X. Y. 2009 Numerical investigation of shock wave and turbulence interaction over a circular cylinder. Mod. Phys. Lett. B 23, 233236.Google Scholar
Zeman, O. 1990 Dilatation dissipation: the concept and application in modelling compressible mixing layers. Phys. Fluids A 2, 178188.CrossRefGoogle Scholar