Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-09T05:37:24.797Z Has data issue: false hasContentIssue false

Numerical investigation of tandem-cylinder noise reduction using plasma-based flow control

Published online by Cambridge University Press:  02 September 2014

Ahmed Eltaweel
Affiliation:
Institute for Flow Physics and Control, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
Meng Wang*
Affiliation:
Institute for Flow Physics and Control, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
Dongjoo Kim
Affiliation:
Department of Mechanical Engineering, Kumoh National Institute of Technology, Gumi, Gyeongbuk, Korea
Flint O. Thomas
Affiliation:
Institute for Flow Physics and Control, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
Alexey V. Kozlov
Affiliation:
Institute for Flow Physics and Control, Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
*
Email address for correspondence: [email protected]

Abstract

The noise of flow over tandem cylinders at $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}}{\mathit{Re}}_D= 22\, 000$ and its reduction using single dielectric barrier discharge (SDBD) plasma actuators are simulated numerically both to confirm and extend experimental results. The numerical approach is based on large-eddy simulation (LES) for the turbulent flow field, a semi-empirical plasma actuation model, and Lighthill’s theory for acoustic calculation. Excellent agreement between LES and experimental results is obtained for both the baseline flow and flow with plasma control in terms of wake velocity profiles, turbulence intensity, and frequency spectra of pressure fluctuations on the downstream cylinder. The validated flow-field results allow an accurate acoustic analysis based on Lighthill’s equation, which is solved using a boundary-element method. The effectiveness of plasma actuators for reducing noise is clearly demonstrated. In the baseline flow, the acoustic field is dominated by the interaction between the downstream cylinder and the upstream wake. Through suppression of vortex shedding from the upstream cylinder, the interaction noise is reduced drastically by the plasma flow control, and the vortex-shedding noise from the downstream cylinder becomes equally important. At a free-stream Mach number of 0.2, the peak sound pressure level is reduced by approximately 16 dB. This suggests the viability of plasma actuation for active aeroacoustic control of airframe noise.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arie, M., Kiya, M., Moriya, M. & Mori, H. 1983 Pressure fluctuations on the surface of two circular cylinders in tandem arrangement. Trans. ASME: J. Fluids Engng 105, 161167.Google Scholar
Brès, G. A., Freed, D., Wessels, M., Noelting, S. & Pérot, F. 2012 Flow and noise predictions for the tandem cylinder aeroacoustic benchmark. Phys. Fluids 24, 036101.Google Scholar
Corke, T. C., Enloe, C. L. & Wilkinson, S. P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42, 505529.Google Scholar
Curle, N. 1955 The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A 231, 505514.Google Scholar
Doolan, C. J.2009 Flow and noise simulation of the NASA tandem cylinder experiment using OpenFOAM. AIAA Paper 2009-3157.CrossRefGoogle Scholar
Eltaweel, A. & Wang, M.2011 Numerical simulation of broadband noise from airfoil–wake interaction. AIAA Paper 2011-2802.Google Scholar
Giret, J.-C., Sengissen, A., Moreau, S., Sanjosé, M. & Jouhaud, J.-C. 2014 Noise prediction and analysis of a rod–airfoil configuration using unstructured LES. AIAA J. (in press).Google Scholar
Hao, J., Eltaweel, A. & Wang, M. 2013a Sound generated by boundary-layer flow over small steps: effect of step non-compactness. AIAA J. 51, 17701775.Google Scholar
Hao, J., Wang, M., Ji, M. & Wang, K. 2013b Flow noise induced by small gaps in low-Mach-number turbulent boundary layers. Phys. Fluids 25, 110821.Google Scholar
Igarishi, T. 1981 Characteristics of the flow around two circular cylinders in tandem, 1st report. Bull. JSME B24, 232331.Google Scholar
Igarishi, T. 1984 Characteristics of the flow around two circular cylinders in tandem, 2nd report. Bull. JSME B27, 23802387.Google Scholar
Jacob, M. C., Boudet, J., Casalino, D. & Michard, M. 2005 A rod–airfoil experiment as benchmark for broadband noise modeling. Theor. Comput. Fluid Dyn. 19, 171196.CrossRefGoogle Scholar
Jenkins, L. N., Khorrami, M. R., Choudhari, M. M. & McGinley, C. B.2005 Characterization of unsteady flow structures around tandem cylinders for component interaction studies in airframe noise. AIAA Paper 2005-2812.CrossRefGoogle Scholar
Jenkins, L. N., Neuhart, D. H., McGinley, C. B., Choudhari, M. M. & Khorrami, M. R.2006 Measurement of unsteady wake interference between tandem cylinders. AIAA Paper 2006-3202.Google Scholar
Jester, W. & Kallinderis, T. 2003 Numerical study of incompressible flow about fixed cylinder pairs. J. Fluids Struct. 17, 561577.Google Scholar
Khalighi, Y., Mani, A., Ham, F. & Moin, P. 2010 Prediction of sound generated by complex flows at low Mach numbers. AIAA J. 48, 306316.Google Scholar
Khorrami, M. R., Choudhari, M. M., Jenkins, L. N. & McGinley, C. B. 2007 Unsteady flowfield around tandem cylinders as prototype for component interaction in airframe noise. AIAA J. 45, 19301941.Google Scholar
Kim, D. & Wang, M.2009 Large-eddy simulation of flow over a circular cylinder with plasma-based control. AIAA Paper 2009-1080.Google Scholar
Kozlov, A. V. & Thomas, F. O. 2011a Bluff-body flow control via two types of dielectric barrier discharge plasma actuation. AIAA J. 49, 19191931.Google Scholar
Kozlov, A. V. & Thomas, F. O. 2011b Plasma flow control of cylinders in a tandem configuration. AIAA J. 49, 21832193.CrossRefGoogle Scholar
Lighthill, J. M. 1952 On sound generated aerodynamically. Part I. General theory. Proc. R. Soc. Lond. A 211, 564587.Google Scholar
Lin, J.-C., Yang, Y. & Rockwell, D. 2002 Flow past two cylinders in tandem: instantaneous and averaged flow structure. J. Fluids Struct. 16, 10591071.Google Scholar
Ljungkrona, L., Norberg, C. & Sunden, B. 1991 Free-stream turbulence and tube spacing effects on surface pressure fluctuations for two tubes in an in-line arrangement. J. Fluids Struct. 5, 701727.Google Scholar
Lockard, D. P., Choudhari, M. M., Khorrami, M. R., Neuhart, D. H., Hutcheson, F. V., Brooks, T. F. & Stead, D. J.2008 Aeroacoustic simulations of tandem cylinders with subcritical spacing. AIAA Paper 2008-2862.Google Scholar
Lockard, D. P., Khorrami, M. R., Choudhari, M. M., Hutcheson, F. V., Brooks, T. F. & Stead, D. J.2007 Tandem cylinder noise predictions. AIAA Paper 2007-3450.Google Scholar
Mahesh, K., Contantinescu, G. & Moin, P. 1998 A numerical method for large-eddy simulation in complex geometries. J. Comput. Phys. 140, 233258.Google Scholar
Mittal, S., Kumar, V. & Raghuvanshi, A. 1997 Unsteady incompressible flows past two cylinders in tandem and staggered arrangements. Intl J. Numer. Meth. Fluids 25, 13151344.Google Scholar
Neuhart, D. H., Jenkins, L. N., Choudhari, M. M. & Khorrami, M. R.2009 Measurements of the flowfield interaction between tandem cylinders. AIAA Paper 2009-3275.Google Scholar
Oberai, A. A., Roknaldin, F. & Hughes, T. J. R. 2002 Computation of trailing-edge noise due to turbulent flow over an airfoil. AIAA J. 40, 22062216.Google Scholar
Suzen, Y. B., Huang, P. G., Jacob, J. D. & Ashipis, D. E.2005 Numerical simulation of plasma based flow control applications. AIAA Paper 2005-4633.Google Scholar
Thomas, F. O., Corke, T. C., Iqbal, M., Kozlov, A. V. & Schatzman, D. 2009 Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA J. 47, 21692178.CrossRefGoogle Scholar
Thomas, F. O., Kozlov, A. V. & Corke, T. C. 2008 Plasma actuators for cylinder flow control and noise reduction. AIAA J. 46, 19211931.Google Scholar
Wang, M., Freund, J. B. & Lele, S. K. 2006 Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38, 483512.CrossRefGoogle Scholar
Wang, M., Lele, S. K. & Moin, P. 1996 Computation of quadrupole noise using acoustic analogy. AIAA J. 34, 22472254.CrossRefGoogle Scholar
Wang, M. & Moin, P. 2000 Computation of trailing-edge flow and noise using large-eddy simulation. AIAA J. 38, 22012209.Google Scholar
Weinmann, M., Sandberg, R. D. & Doolan, C. J.2010 Flow and noise predictions for a tandem cylinder configuration using novel hybrid RANS/LES approaches. AIAA Paper 2010-3787.Google Scholar
Xu, G. & Zhou, Y. 2004 Strouhal numbers in the wake of two inline cylinders. Exp. Fluids 37, 248256.CrossRefGoogle Scholar
Yang, Q. & Wang, M. 2009 Computational study of roughness-induced boundary-layer noise. AIAA J. 47, 24172429.Google Scholar
Yang, Q. & Wang, M. 2013 Boundary-layer noise induced by arrays of roughness elements. J. Fluid Mech. 727, 282317.Google Scholar
Zdravkovich, M. M. 1985 Flow induced oscillations of two interfering circular cylinders. J. Sound Vib. 101, 511521.Google Scholar