Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T05:41:51.881Z Has data issue: false hasContentIssue false

Numerical investigation of a honeycomb liner grazed by laminar and turbulent boundary layers

Published online by Cambridge University Press:  08 March 2016

Qi Zhang*
Affiliation:
Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
Daniel J. Bodony
Affiliation:
Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
*
Email address for correspondence: [email protected]

Abstract

Direct numerical simulations are used to study the interaction of a cavity-backed circular orifice with grazing laminar and turbulent boundary layers and incident sound waves. The flow conditions and geometry are representative of single degree-of-freedom acoustic liners applied in the inlet and exhaust ducts of aircraft engines and are the same as those from experiments conducted at NASA Langley. The simulations identify the fluid mechanics of how the sound field and state of the grazing boundary layer impact the in-orifice flow and suggest a simple flow analogy that enables scaling estimates. From the scaling estimates the simulations are then used to develop reduced-order models for the in-orifice flow and a time-domain impedance model is constructed. The liner is found to increase drag at all conditions studied by an amount that increases with the incident sound pressure amplitude.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bodony, D. J. 2006 Analysis of sponge zones for computational fluid mechanics. J. Comput. Phys. 212, 681702.Google Scholar
Bodony, D. J., Zagaris, G., Reichert, A. & Zhang, Q. 2011 Provably stable overset grid methods for computational aeroacoustics provably stable overset grid methods for computational aeroacoustics. J. Sound Vib. 330 (17), 41614179.Google Scholar
Botella, O. & Peyret, R. 1998 Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids 27 (4), 421433.CrossRefGoogle Scholar
Ćosić, B., Wassmer, D., Terhaar, S. & Paschereit, C. 2015 Acoustic response of Helmholtz dampers in the presence of hot grazing flow. J. Sound Vib. 335, 118.Google Scholar
Cummings, A. 1987 The response of a resonator under a turbulent boundary layer to a high amplitude non-harmonic sound field. J. Sound Vib. 115 (2), 321328.CrossRefGoogle Scholar
Dean, P. D. 1974 In situ method of wall acoustic impedance measurement in flow ducts. J. Sound Vib. 34 (1), 97130.Google Scholar
Degraaff, D. B. & Eaton, J. K. 2000 Reynolds-number scaling of the flat-plate turbulent boundary layer. J. Fluid Mech. 422, 319346.Google Scholar
Dowling, A. P. & Hughes, I. J. 1992 Sound absorption by a screen with a regular array of slits. J. Sound Vib. 156, 387405.Google Scholar
Eldredge, J. D. & Dowling, A. P. 2003 The absorption of axial acoustic waves by a perforated liner with bias flow. J. Fluid Mech. 485, 307335.CrossRefGoogle Scholar
Enghardt, L., Fisher, A., Schulz, A. & Busse-Gerstengarbe, S.2012 Determination of the impedance for lined ducts with grazing flow. In AIAA Paper 2012-2243, Presented at the 18th AIAA/CEAS Aeroacoustics Conference and Exhibit, Colorado Springs, CO, June.Google Scholar
Evans, L. C. 1998 Partial Differential Equations. American Mathematical Society.Google Scholar
Fischer, A., Bake, F. & Bassetti, A.2013 The acoustic-particle velocity in the vicinity of a liner: a PIV – CAA comparison. In AIAA Paper 2013-2055, Presented at the 19th AIAA/CEAS Aeroacoustics Conference and Exhibit, Berlin, Germany, May.Google Scholar
Gerhold, C. H., Brown, M. C. & Jasinski, C. M.2016 Evaluation of skin friction drag for liner applications in aircraft. In AIAA Paper 2016-1267, Presented at the 54th AIAA Aerospace Sciences Meeting.Google Scholar
Goldman, A. L. & Panton, R. L. 1976 Measurement of the acoustic impedance of an orifice under a turbulent boundary layer. J. Acoust. Soc. Am. 60 (6), 13971404.Google Scholar
Goody, M. C. 2004 Empirical spectral model of surface pressure fluctuations. Am. Inst. Aeronaut. Astronaut. J. 42 (9), 17881794.CrossRefGoogle Scholar
Hersh, A. S. & Rogers, T.1976 Fluid mechanical model of the acoustic impedance of small orifices. In Contractor Report NASA CR-2682. National Aeronautics and Space Administration.Google Scholar
Hersh, A. S., Walker, B. E. & Celano, J. W. 2003 Helmholtz resonator impedance model, part 1: nonlinear behavior. AIAA J. 41 (5), 795808.Google Scholar
Howe, M. S. 1979 On the theory of unsteady high Reynolds number flow through a circular aperture. Proc. R. Soc. Lond. A 366, 205223.Google Scholar
Howerton, B. M. & Jones, M. G.2015 Acoustic liner drag: a parametric study of conventional configurations. In AIAA Paper 2015-2230, Presented at the 21st AIAA/CEAS Aeroacoustics Conference.CrossRefGoogle Scholar
Hughes, I. J. & Dowling, A. P. 1990 The absorption of sound by perforated linings. J. Fluid Mech. 218, 209229.Google Scholar
Ingard, U. 1953 On the theory and design of acoustic resonators. J. Acoust. Soc. Am. 25 (6), 10371061.CrossRefGoogle Scholar
Ingard, U. & Labate, S. 1950 Acoustic circulation effects and the nonlinear impedance of orifices. J. Acoust. Soc. Am. 22, 211219.Google Scholar
Ji, C. & Zhao, D. 2014 Lattice boltzmann investigation of acoustic damping mechanism and performance of an in-duct circular orifice. J. Acoust. Soc. Am. 6, 32433251.Google Scholar
Jing, X., Sun, X., Wu, J. & Meng, K. 2001 Effect of grazing flow on the acoustic impedance of an orifice. AIAA J. 39 (8), 14781484.Google Scholar
Jones, M. G., Smith, W. R., Parrott, T. L. & Smith, C. D.2004 Design and evaluation of modifications to the nasa langley flow impedance tube. In AIAA Paper 2004-2837, Presented at the 10th AIAA/CEAS Aeroacoustics Conference. AIAA.CrossRefGoogle Scholar
Jones, M. G., Tracy, M. B., Watson, W. R. & Parrott, T. L.2002 Effects of liner geometry on acoustic impedance. In AIAA Paper 2002-2446, Presented at the 8th AIAA/CEAS Aeroacoustics Conference and Exhibit, Breckenridge, CO, June, AIAA.Google Scholar
Jones, M. G. & Watson, W. R.2011 On the use of experimental methods to improve confidence in educed impedance. In AIAA Paper 2011-2865, Presented at the 17th AIAA/CEAS Aeroacoustics Conference, Portland, OR, June.CrossRefGoogle Scholar
Jones, M. G., Watson, W. R., Howerton, B. M. & Busse-Gerstengarbe, S. 2015 Effects of mean flow assumption and harmonic distortion on impedance eduction methods. AIAA J. 53, 15031514.CrossRefGoogle Scholar
Jones, M. G., Watson, W. R. & Nark, D. M.2010 Effects of flow profile on educed acoustic liner impedance. In AIAA Paper 2010-3763, Presented at the 16th AIAA/CEAS Aeroacoustics Conference, Stockholm, Sweden.Google Scholar
Klewicki, J. C., Murray, J. A. & Falco, R. E. 1994 Vortical motion contributions to stress transport in turbulent boundary layers. Phys. Fluids 6, 277286.Google Scholar
Kooijman, G., Hirschberg, A. & Golliard, J. 2008 Acoustical response of orifices under grazing flow: Effect of boundary layer profile and edge geometry. J. Sound Vib. 315, 849874.Google Scholar
Lee, S., Ih, J. & Peat, K. S. 2007 A model of acoustic impedance of perforated plates with bias flow considering the interaction effect. J. Sound Vib. 303, 741752.Google Scholar
Ma, R., Slaboch, P. E. & Morris, S. C. 2009 Fluid mechanics of the flow-excited Helmholtz resonator. J. Fluid Mech. 623, 126.CrossRefGoogle Scholar
Mahesh, K. 2013 The interaction of jets with crossflow. Annu. Rev. Fluid Mech. 45, 379407.Google Scholar
Malik, M. R. 1990 Numerical methods for hypersonic boundary layer stability. J. Comput. Phys. 86, 376413.Google Scholar
Marx, D. & Aurégan, Y. 2013 Effect of turbulent eddy viscoisty on the unstable surface mode above an acoustic liner. J. Sound Vib. 332, 38033820.Google Scholar
Melling, T. H. 1973 The acoustic impedance of perforates at medium and high sound pressure levels. J. Sound Vib. 29, 165.CrossRefGoogle Scholar
Mochizuki, S. & Nieuwstadt, F. T. M. 1996 Reynolds-number-dependence of the maximum in the streamwise velocity fluctuations in wall turbulence. Exp. Fluids 5, 407417.Google Scholar
Morse, P. M. & Ingard, K. U. 1968 Theoretical Acoustics. Princeton University Press.Google Scholar
Motsinger, R. E. & Kraft, R. E. 1995 Design and performance of duct acoustic treatment. In Aeroacoustics of Flight Vehicles: Theory and Practice (ed. Hubbard, H. H.), vol. II. Acoustical Society of America.Google Scholar
Ozalp, C., Pinarbasi, A. & Rockwell, D. 2003 Self-excited oscillations of turbulent inflow along a perforated plate. J. Fluids Struct. 17, 955970.Google Scholar
Pierce, A. D. 1994 Acoustics: An Introduction to Its Physical Principles and Applications. Acoustical Society of America.Google Scholar
Piot, E., Primus, J. & Simon, F.2012 Liner impedance eduction technique based on velocity fields. In AIAA Paper 2012-2198, Presented at the 18th AIAA/CEAS Aeroacoustics Conference and Exhibit, Colorado Springs, CO, June, AIAA.Google Scholar
Posey, J. W., Tinetti, A. F. & Dunn, M. H.2006 The low-noise potental of distributed propulsion on a catamaran aircraft. In AIAA Paper 2006-2622, Presented at the 12th AIAA/CEAS Aeroacoustics Conference and Exhibit, Cambridge, MA, May, AIAA.Google Scholar
Reichert, A., Heath, M. T. & Bodony, D. J. 2012 Energy stable numerical methods for hyperbolic partial differential equations using overlapping domain decomposition. J. Comput. Phys. 231, 52435265.Google Scholar
Roche, J. M., Leylekian, L., Delattre, G. & Vuillot, F.2009 Aircraft fan noise absorption: DNS of the acoustic dissipation of resonant liners. In AIAA Paper 2009-3146, Presented at the 15th AIAA/CEAS Aeroacoustics Conference and Exhibit, Miami, FL, May, AIAA.Google Scholar
Rogers, T. & Hersh, A. S.1975 The effect of grazing flow on the steady state resistance of square-edged orificess. In AIAA Paper 75-493, Presented at the 2nd Aeroacoustics Conference, Hampton, VA, March.Google Scholar
Scarpato, A., Ducruix, S. & Schuller, T. 2013 Optimal and off-design operations of acoustic dampers using perforated plates backed by a cavity. J. Sound Vib. 332 (20), 48564875.CrossRefGoogle Scholar
Scarpato, A., Tran, N., Ducruix, S. & Schuller, T. 2012 Modeling the damping properties of perforated screens traversed by a bias flow and backed by a cavity at low Strouhal number. J. Sound Vib. 331 (2), 276290.Google Scholar
Schlichting, H. 1979 Boundary-Layer Theory, 4th edn. McGraw-Hill.Google Scholar
Schuster, B.2012 A comparison of ensemble averaging methods using a comparison of ensemble averaging methods using dean’s method for in-situ impedance measurements. In AIAA Paper 2012-2244, Presented at the 18th AIAA/CEAS Aeroacoustics Conference and Exhibit, Colorado Springs, CO, June, AIAA.Google Scholar
Sherer, S. E., Visbal, M. R. & Galbraith, M. C.2006 Automated preprocessing tools for use with a high-order overset-grid algorithm. In AIAA Paper 2006-1147, Presented at the 44th Aerospace Sciences Meeting and Exhibit, Reno, NV, January, AIAA.CrossRefGoogle Scholar
Singh, D. K. & Rienstra, S. W. 2014 Nonlinear asymptotic impedance model for a helmholtz resonator liner. J. Sound Vib. 333 (15), 35363549.Google Scholar
Sivian, L. J. 1935 Acoustics impedance of small orifices. J. Sound Vib. 7, 94101.Google Scholar
Strand, B. 1994 Summation by parts for finite difference approximation for $\text{d}/\text{d}x$ . J. Comput. Phys. 110, 4767.Google Scholar
Suhs, N., Rogers, S. & Dietz, W. 2003 PEGASUS 5: an automated pre-processor for overset-grid CFD. Am. Inst. Aeronaut. Astronaut. J. 41 (6), 10371045.Google Scholar
Sun, X., Jing, X., Zhang, H. & Shi, Y. 2002 Effect of grazing-bias flow interaction on acoustic impedance of perforated plates. J. Sound Vib. 254 (3), 557573.CrossRefGoogle Scholar
Svärd, M., Carpenter, M. H. & Nordström, J. 2007 A stable high-order finite difference scheme for the compressible Navier–Stokes equations, far-field boundary conditions. J. Comput. Phys. 225, 10201038.Google Scholar
Svärd, M. & Nordström, J. 2008 A stable high-order finite difference scheme for the compressible Navier–Stokes equations: no-slip wall boundary conditions. J. Comput. Phys. 227, 48054824.CrossRefGoogle Scholar
Taktak, M., Ville, J. M., Haddar, M., Gabard, G. & Foucart, F. 2010 An indirect method for the characterization of locally reacting liners. J. Acoust. Soc. Am. 127 (6), 35483559.Google Scholar
Tam, C. K. W. & Auriault, L. 1996 Time-domain impedance boundary conditions for computational aeroacoustics. AIAA J. 34 (5), 917923.Google Scholar
Tam, C. K. W., Ju, H., Jones, M. G., Watson, W. R. & Parrott, T. L. 2008a A computational and experimental study of resonators in three dimensions. J. Sound Vib. 313, 449471.Google Scholar
Tam, C. K. W., Ju, H. & Walker, B. E. 2008b Numerical simulation of a slit resonator in a grazing flow under acoustic excitation. J. Sound Vib. 313, 449471.Google Scholar
Tam, C. K. W., Kurbatskii, K. A., Ahuja, K. K. &  Gaeta, R. J. Jr 2001 A numerical and experimental investigation of the dissipation mechanisms of resonant acoustic liners. J. Sound Vib. 245 (3), 545557.Google Scholar
Tam, C. K. W., Pastouchenko, N. N., Jones, M. G. & Watson, W. R. 2014 Experimental validation of numerical simulations for an acoustic liner in grazing flow: self-noise and added drag. J. Sound Vib. 333, 28312854.Google Scholar
Tonon, D., Moers, E. & Hirschberg, A. 2013 Quasi-steady acoustic response of wall perforations subject to a grazing-bias flow combination. J. Sound Vib. 332, 16541673.Google Scholar
Visbal, M. & Gaitonde, D. 2002 On the use of higher-order finite difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155185.CrossRefGoogle Scholar
Wang, K. & Wang, M. 2012 Aero-optics of subsonic turbulent boundary layers. J. Fluid Mech. 696, 122151.Google Scholar
Watson, W. R. & Jones, M. G.2013 A comparative study of four impedance eduction methodologies using several test liners. In AIAA Paper 2013-2274, Presented at the 19th AIAA/CEAS Aeroacoustics Conference, Berlin, May, AIAA.Google Scholar
Xu, J., Li, X. & Guo, Y.2014 Nonlinear absorption characteristic of micro resonator under high sound pressure level. In AIAA Paper 2014-3353, Presented at the 20th AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, June, AIAA.Google Scholar
Zhang, Q.2014 Direct numerical investigation and reduced-order modeling of 3-D honeycomb acoustic liners. PhD thesis, University of Illinois at Urbana-Champaign.Google Scholar
Zhang, Q. & Bodony, D. J. 2011 Numerical simulation of two-dimensional acoustic liners with high speed grazing flow. AIAA J. 49 (2), 365382.Google Scholar
Zhang, Q. & Bodony, D. J. 2012 Numerical investigation and modeling of acoustically-excited flow through a circular orifice backed by a hexagonal cavity. J. Fluid Mech. 693, 367401.Google Scholar
Zhou, L. & Bodén, H. 2014 Experimental investigation of an in-duct orifice with bias flow under medium and high level acoustic excitation. Intl J. Spray Combust. Dyn. 6 (3), 267292.Google Scholar