Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-04T03:18:27.497Z Has data issue: false hasContentIssue false

Numerical analysis of the mean structure of gaseous detonation with dilute water spray

Published online by Cambridge University Press:  17 January 2020

Hiroaki Watanabe*
Affiliation:
Department of Mechanical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
Akiko Matsuo
Affiliation:
Department of Mechanical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
Ashwin Chinnayya
Affiliation:
Institut Pprime – UPR 3346 CNRS, ENSMA, University of Poitiers, 1 avenue Clément Ader, BP 40109, 86961Futuroscope-Chasseneuil CEDEX, France
Ken Matsuoka
Affiliation:
Department of Aerospace Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603, Japan
Akira Kawasaki
Affiliation:
Department of Aerospace Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603, Japan
Jiro Kasahara
Affiliation:
Department of Aerospace Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya, Aichi, 464-8603, Japan
*
Email address for correspondence: [email protected]

Abstract

Two-dimensional (2-D) numerical simulations based on the Eulerian–Lagrangian method that take droplet break-up into account are conducted to clarify the mean structure of gaseous detonation laden with a dilute water spray. The premixed mixture is a slightly diluted stoichiometric hydrogen–oxygen mixture at low pressure. The simulated results are analysed via 2-D flow fields and statistical Favre spatiotemporal averaging techniques. Gaseous detonation with water droplets (WD) propagates stably with a velocity decrease compared with the dry Chapman–Jouguet speed. The mean structure of gaseous detonation with dilute water spray shares a similar structure as the one without water spray. However, the hydrodynamic thickness is changed due to the interaction with water spray. Overall interphase exchanges (mass, momentum and energy) that take place within the hydrodynamic thickness induce a decrease of the detonation velocity and lower the level of fluctuations downstream of the mean leading shock wave. Droplet break-up occurs downstream of the induction zone and in our case, the water vapour from the evaporation of water spray does not affect the reactivity of gaseous detonation. The laminar master equation for gaseous detonation laden with inert WD shows that the hydrodynamic thickness should rely on the gaseous sound speed, and works well as the working mixture is weakly unstable and its cellular structure is regular. The droplet flow regimes and break-up modes have also been determined. The characteristic lengths of detonation and interphase exchanges have been ordered under the present simulation conditions and have been shown to be intimately intertwined.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramzon, B. & Sirignano, W. A. 1989 Droplet vaporization model for spray combustion calculations. Intl J. Heat Mass Transfer 32 (9), 16051618.CrossRefGoogle Scholar
Austin, J. M.2003 The role of instability in gaseous detonation. PhD thesis, California Institute of Technology, Pasadena, CA.Google Scholar
Austin, J. M. & Shepherd, J. E. 2003 Detonations in hydrocarbon fuel blends. Combust. Flame 132, 7390.CrossRefGoogle Scholar
Benmahammed, M. A., Veyssiere, B., Khasainov, B. A. & Mar, M. 2016 Effect of gaseous oxidizer composition on the detonability of isooctane-air sprays. Combust. Flame 155, 198207.CrossRefGoogle Scholar
Boeck, L. R., Kink, A., Oezdin, D., Hasslberger, J. & Sattelmayer, T. 2015 Influence of water mist on flame acceleration, DDT and detonation in H2 -air mixtures. Intl J. Hydrog. Energy 40 (21), 69957004.CrossRefGoogle Scholar
Brennen, C. E. 2005 Fundamentals of Multiphase Flows. Cambridge University Press.CrossRefGoogle Scholar
Brodkey, R. S. 1967 The Phenomena of Fluid Motions. Addison-Wesley.Google Scholar
Chang, E. J. & Kailasanath, K. 2003 Shock wave interactions with particle and liquid fuel droplets. Shock Waves 12 (4), 333341.CrossRefGoogle Scholar
Chapman, S. & Cowling, T. G. 1991 The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press.Google Scholar
Chauvin, A., Daniel, E., Chinnayya, A., Massoni, J. & Jourdan, G. 2016 Shock waves in sprays: numerical study of secondary atomization and experimental comparison. Shock Waves 26 (4), 403415.CrossRefGoogle Scholar
Chauvin, A., Jourdan, G., Daniel, E., Houas, L. & Tosello, R. 2011 Experimental investigation of the propagation of a planar shock wave through a two-phase gas–liquid medium. Phys. Fluids 23, 113301.CrossRefGoogle Scholar
Cromer, A. 1981 Stable solutions using the Euler approximation. Am. J. Phys. 49 (9), 455459.CrossRefGoogle Scholar
Dabora, E. K., Ragland, K. W. & Nicholls, J. A. 1969 Drop-size effects in spray detonations. Proc. Combust. Inst. 12 (1), 1926.CrossRefGoogle Scholar
Favre, A. 1965 Equations des gas turbulents compressibles. J. Méc. 4, 361421.Google Scholar
Fedorov, A. V. & Kratova, Y. V. 2015a Analysis of the influence of inert particles on the propagation of a cellular heterogeneous detonation. Shock Waves 25 (3), 255265.CrossRefGoogle Scholar
Fedorov, A. V. & Kratova, Y. V. 2015b Influence of non-reactive particle cloud on heterogeneous detonation propagation. J. Loss Prev. Process Ind. 36, 404415.CrossRefGoogle Scholar
Frolov, S. M., Aksenov, V. S., Ivanov, V. S. & Shamshin, I. O. 2017 Continuous detonation combustion of ternary ‘hydrogen–liquid propane–air’ mixture in annular combustor. Intl J. Hydrog. Energy 42 (26), 1680816820.CrossRefGoogle Scholar
Gordon, S., McBride, B. J. & Zeleznik, F. J.1984 Computer program for calculation of complex chemical equilibrium compositions and applications supplement I – transport properties. NASA Tech. Memo 86885.Google Scholar
Gottlieb, S., Shu, C. & Tadmor, E. 2001 Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (1), 89112.CrossRefGoogle Scholar
Gou, X., Sun, W., Chen, Z. & Ju, Y. 2010 A dynamic multi-timescale method for combustion modeling with detailed and reduced chemical kinetic mechanisms. Combust. Flame 157 (6), 11111121.CrossRefGoogle Scholar
Guha, A. 1992a Jump conditions across normal shock waves in pure vapour-droplet flows. J. Fluid Mech. 241, 349369.CrossRefGoogle Scholar
Guha, A. 1992b Structure of partly dispersed normal shock waves in vapor-droplet flows. Phys. Fluids 4, 15661578.CrossRefGoogle Scholar
Guildenbecher, D. R., Lopez-Rivera, C. & Sojka, P. E. 2009 Secondary atomization. Exp. Fluids 46, 371402.CrossRefGoogle Scholar
Higgins, A. 2012 Steady one-dimensional detonations. In Shock Wave Science and Technology Reference Library, Detonation Dynamics. Springer.Google Scholar
van der Hoef, M. A., van Sint Annaland, M., Deen, N. G. & Kuipers, J. A. M. 2008 Numerical simulation of dense gas–solid fluidized beds: a multiscale modeling strategy. Annu. Rev. Fluid Mech. 40, 4770.CrossRefGoogle Scholar
Hong, Z., Davidson, D. F. & Hanson, R. K. 2011 An improved H2/O2 mechanism based on recent shock tube/laser absorption measurements. Combust. Flame 158 (4), 633644.CrossRefGoogle Scholar
Hu, F., Wang, X. & Chen, X. 2016 A modified fifth-order WENOZ method for hyperbolic conservation laws. J. Comput. Appl. Maths 303, 5668.CrossRefGoogle Scholar
Jarsalé, G.2017 Etude expérimentale de l’interaction d’une détonation gazeuse avec un spray d’eau. PhD thesis, ISAE-ENSMA.Google Scholar
Jarsalé, G., Virot, F. & Chinnayya, A. 2016 Ethylene-air detonation in water spray. Shock Waves 26 (5), 561572.CrossRefGoogle Scholar
Ju, Y. & Law, C. K. 2002 Propagation and quenching of detonation waves in particle laden mixtures. Combust. Flame 129 (4), 356364.CrossRefGoogle Scholar
Kailasanath, K. 2000 Review on propulsion application of detonation waves. AIAA J. 38 (9), 16981708.CrossRefGoogle Scholar
Kailasanath, K. 2006 Liquid-fueled detonations in tubes. J. Propul. Power 22 (6), 12611268.CrossRefGoogle Scholar
Kasimov, A. R. & Stewart, D. S. 2004 On the dynamics of self-sustained one-dimensional detonations: a numerical study in the shock-attached frame. Phys. Fluids 16, 35663578.CrossRefGoogle Scholar
Kim, K. H., Kim, C. & Rho, O. H. 2001 Methods for the accurate computations of hypersonic flows I. AUSMPW+ Scheme. J. Comput. Phys. 174 (1), 3880.CrossRefGoogle Scholar
Kindracki, J. 2015 Experimental research on rotating detonation in liquid fuel-gaseous air mixture. Aerosp. Sci. Technol. 43, 445453.CrossRefGoogle Scholar
Kolev, N. I. 2007 Multiphase Flow Dynamics 2: Mechanical Interactions. Springer.CrossRefGoogle Scholar
Lee, H. I. & Stewart, D. S. 1990 Calculation of linear detonation instability: one-dimensional instability of plane detonation. J. Fluid Mech. 216, 103132.CrossRefGoogle Scholar
Lee, J. H. S. 2008 The Detonation Phenomenon. Cambridge University Press.CrossRefGoogle Scholar
Lee, J. H. S. & Radulescu, M. I. 2005 On the hydrodynamic thickness of cellular detonations. Combust. Explos. Shock Waves 41 (6), 745765.CrossRefGoogle Scholar
Li, J., Fan, W., Chen, W., Wang, K. & Yan, C. 2011 Propulsive performance of a liquid kerosene/oxygen pulse detonation rocket engine. Exp. Therm. Fluid Sci. 35 (1), 265271.CrossRefGoogle Scholar
Libouton, J. C., Jacques, A. & van Tiggelen, P. J.1981 Cinétique, structure et entretien des ondes de détonation. Actes du Colloque International Berthelot-Vieille-Mallard-Le Chatelier 2, 437–442.Google Scholar
Ling, Y., Wagner, J. L., Beresh, S. J., Kearney, S. P. & Balachandar, S. 2012 Interaction of a planar shock wave with a dens particle curtain: modeling and experiments. Phys. Fluids 24, 113301.CrossRefGoogle Scholar
Liu, Y., Liu, X. & Li, X. 2016 Numerical investigation of hydrogen detonation suppression with inert particle in pipelines. Intl J. Hydrog. Energy 41 (46), 2154821563.CrossRefGoogle Scholar
Lu, W., Fan, W., Wang, K, Zhang, Q. & Chi, Y. 2017 Operation of a liquid-fueled and valveless pulse detonation rocket at high frequency. Proc. Combust. Inst. 36 (2), 26572664.CrossRefGoogle Scholar
Lu, T. & Law, C. K. 2004 Heterogeneous effects in the propagation and quenching of spray detonations. J. Propul. Power 20 (5), 820827.CrossRefGoogle Scholar
Maxwell, B. M., Bhattacharjee, R. R., Lau-Chapdelaine, S. S. M., Falle, S. A. E. G., Sharpe, G. J. & Radulescu, M. I. 2017 Influence of turbulent fluctuations on detonation propagation. J. Fluid Mech. 818, 646696.CrossRefGoogle Scholar
McBride, B. J. & Gordon, S. 1996 Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, NASA Reference Publication, 1311, pp. 1178.Google Scholar
McBride, B. J., Gordon, S. & Reno, M. A.1993 Coefficients for calculating thermodynamic and transport properties of individual species. NASA Tech. Memo. 4513.Google Scholar
Mi, X., Higgins, A. J., Ng, H. D., Kiyanda, C. B. & Nikiforakis, N. 2017a Propagation of gaseous detonation waves in a spatially inhomogeneous reactive medium. Phys. Rev. Fluids 2, 053201.CrossRefGoogle Scholar
Mi, X., Timofeev, E. V. & Higgins, A. 2017b Effect of spatial discretization of energy on detonation wave propagation. J. Fluid Mech. 817, 306338.CrossRefGoogle Scholar
Murrary, S. B. & Thibault, P. A. 2009 Spray detonation. In Shock Wave Science and Technology Reference Library, Heterogeneous Detonation. Springer.Google Scholar
Ng, H. D., Radulescu, M. I., Higgins, A. J., Nikiforakis, N. & Lee, J. H. S. 2005 Numerical investigation of the instability for one-dimensional Chapman–Jouguet detonations with chain-branching kinetics. Combust. Theor. Model. 9 (3), 385401.CrossRefGoogle Scholar
Niedzeilska, U., Kapusta, L. J., Savard, B. & Teodorczyk, A. 2017 Influence of water droplets on propagating detonations. J. Loss Prev. Process Ind. 50, 229236.CrossRefGoogle Scholar
Papalexandris, M. V. 2004 Numerical simulation of detonation in mixtures of gases and solid particles. J. Fluid Mech. 507, 95142.CrossRefGoogle Scholar
Papalexandris, M. V. 2005 Influence of inert particles on the propagation of multidimensional detonation waves. Combust. Flame 141 (3), 216228.CrossRefGoogle Scholar
Pilch, M. & Erdman, C. A. 1987 Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop. Intl J. Mulitiphase Flow 13 (6), 741757.CrossRefGoogle Scholar
Poling, B. E., Prausnitz, J. M. & O’Connel, J. P. 2001 The Properties of Gases and Liquids, 5th edn. McGraw-Hill Education.Google Scholar
Radulescu, M. I.2003 The propagation and failure mechanism of gaseous detonations: experiments in porous-walled tubes. PhD thesis, McGill University.Google Scholar
Radulescu, M. I. 2018 A detonation paradox: why inviscid detonation simulations predict the incorrect trend for the role of instability in gaseous cellular detonations? Combust. Flame 195, 151162.CrossRefGoogle Scholar
Radulescu, M. I., Sharpe, G. J., Law, C. K. & Lee, J. H. S. 2007 The hydrodynamic structure of unstable cellular detonations. J. Fluid Mech. 580, 3181.CrossRefGoogle Scholar
Ragland, K. W., Dabora, E. K. & Nicholls, J. A. 1968 Observed structure of spray detonation. Phys. Fluids 11, 23772388.CrossRefGoogle Scholar
Ranz, W. E. & Marshall, W. R. Jr 1952 Evaporation from drops. Part I. Chem. Engng Prog. 48, 141146.Google Scholar
Reynaud, M., Virot, F. & Chinnayya, A. 2017 A computational study of the interaction of gaseous detonations with a compressible layer. Phys. Fluids 29, 056101.CrossRefGoogle Scholar
Roy, G. D., Frolov, S. M., Borisov, A. A. & Netzer, D. W. 2004 Pulse detonation propulsion: challenges, current status and future perspective. Prog. Energy Combust. Sci. 30 (6), 545672.CrossRefGoogle Scholar
Rudinger, G. 1964 Some properties of shock relaxation in gas flows carrying small particles. Phys. Fluids 7, 658663.CrossRefGoogle Scholar
Saurel, R. & Lemetayer, O. 2001 A multiphase model for compressible flows with interfaces, shocks, detonation waves and caviation. J. Fluid Mech. 431, 239271.CrossRefGoogle Scholar
Shimura, K. & Matsuo, A. 2018 Two-dimensional CFD–DEM simulation of vertical shock wave-induced dust lifting processes. Shock Waves 28 (6), 12851297.CrossRefGoogle Scholar
Smirnov, N. N., Nikitin, V. F., Khadem, J. & Alyari-Shourekhdeli, Sh. 2007 Onset of detonation in polydispersed fuel–air mixtures. Proc. Combust. Inst. 31 (2), 21952204.CrossRefGoogle Scholar
Sow, A., Chinnayya, A. & Hadjadj, A. 2014 Mean structure of one-dimensional unstable detonations with friction. J. Fluid Mech. 743, 503533.CrossRefGoogle Scholar
Sow, A., Chinnayya, A. & Hadjadj, A. 2015 Computational study of non-ideal and mildly-unstable detonation waves. Comput. Fluids 119, 4757.CrossRefGoogle Scholar
Sow, A., Chinnayya, A. & Hadjadj, A. 2019 On the viscous boundary layer of weakly unstable detonation in narrow channels. Comput. Fluids 179, 449458.CrossRefGoogle Scholar
Stewart, D. S. & Kasimov, A. R. 2005 Theory of detonation with an embedded sonic locus. SIAM J. Appl. Maths 66 (2), 384407.CrossRefGoogle Scholar
Sun, R. & Xiao, H. 2015 Diffusion-based coarse graining in hybrid continuum-discrete solvers: theoretical formulation and a priori tests. Intl J. Multiphase Flow 77, 142157.CrossRefGoogle Scholar
Taileb, S., Reynaud, M., Chinnayya, A., Virot, F. & Bauer, P. 2018 Numerical study of 3D gaseous detonations in a square channel. Aerotecnica Missili & Spazio 97 (2), 96102.CrossRefGoogle Scholar
Theofanous, T. G. 2011 Aerobreakup of Newtonian and viscoelastic liquids. Annu. Rev. Fluid Mech. 43, 661690.CrossRefGoogle Scholar
Thomas, G. O. 2000 On the conditions required for explosion mitigation by water sprays. Trans. IChemE 78, 339354.CrossRefGoogle Scholar
Thomas, G. O., Edwards, M. J. & Edwards, D. H. 1990 Studies of detonation quenching by water sprays. Combust. Sci. Technol. 71, 233245.CrossRefGoogle Scholar
Tuley, R., Danby, M., Shrimpton, J. & Palmer, M. 2010 On the optimal numerical time integration for Lagrangian DEM within implicit flow solvers. Comput. Chem. Engng 34 (6), 886899.CrossRefGoogle Scholar
Wassiljewa, A. 1904 Warmeletiung in gsemischen. Oyys Z 5, 737742.Google Scholar
Watanabe, H., Matsuo, A., Matsuoka, K., Kawasaki, A. & Kasahara, J. 2019 Numerical investigation on propagation behavior of gaseous detonation in water spray. Proc. Combust. Inst. 37 (3), 36173626.CrossRefGoogle Scholar
Wilke, C. R. 1950 A viscosity equation for gas mixture. J. Chem. Phys. 18, 517519.CrossRefGoogle Scholar
Wolanski, P. 2013 Detonative propulsion. Proc. Combust. Inst. 34 (1), 125158.CrossRefGoogle Scholar
Zhang, F. 2009 Detonation of gas-particle flow. In Shock Wave Science and Technology Reference Library, Heterogeneous Detonation. Springer.CrossRefGoogle Scholar