Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T13:38:54.920Z Has data issue: false hasContentIssue false

Non-local continuum modelling of steady, dense granular heap flows

Published online by Cambridge University Press:  13 October 2017

Daren Liu
Affiliation:
School of Engineering, Brown University, Providence, RI 02906, USA
David L. Henann*
Affiliation:
School of Engineering, Brown University, Providence, RI 02906, USA
*
Email address for correspondence: [email protected]

Abstract

Dense granular heap flows are common in nature, such as during avalanches and landslides, as well as in industrial flows. In granular heap flows, rapid flow is localized near the free surface with the thickness of the rapidly flowing layer dependent on the overall flow rate. In the region deep beneath the surface, exponentially decaying creeping flow dominates with characteristic decay length depending only on the geometry and not the overall flow rate. Existing continuum models for dense granular flow based upon local constitutive equations are not able to simultaneously predict both of these experimentally observed features – failing to even predict the existence of creeping flow beneath the surface. In this work, we apply a scale-dependent continuum approach – the non-local granular fluidity model – to steady, dense granular flows on a heap between two smooth, frictional side walls. We show that the model captures the salient features of both the flow-rate-dependent, rapidly flowing surface layer and the flow-rate-independent, slowly creeping bulk under steady flow conditions.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abaqus 2015 Reference Manuals. Dassault Systèmes Simulia Corp.Google Scholar
Aranson, I. S. & Tsimring, L. S. 2002 Continuum theory of partially fluidized granular flows. Phys. Rev. E 65, 061303.Google Scholar
Artoni, R. & Richard, P. 2015 Effective wall friction in wall-bounded 3D dense granular flows. Phys. Rev. Lett. 115, 158001.CrossRefGoogle ScholarPubMed
Berzi, D. & Jenkins, J. T. 2011 Surface flows of inelastic spheres. Phys. Fluids 23, 013303.Google Scholar
Bocquet, L., Colin, A. & Ajdari, A. 2009 Kinetic theory of plastic flow in soft glassy materials. Phys. Rev. Lett. 103, 036001.Google Scholar
Bouzid, M., Trulsson, M., Claudin, P., Clément, E. & Andreotti, B. 2013 Nonlocal rheology of granular flows across yield conditions. Phys. Rev. Lett. 111, 238301.Google Scholar
Campbell, C. S. 2014 Clusters in dense-inertial granular flows: two new views of the conundrum. Granul. Matt. 16, 621626.Google Scholar
Crassous, J., Métayer, J.-F., Richard, P. & Laroche, C. 2008 Experimental study of a creeping granular flow at very low velocity. J. Stat. Mech. Theor. Exp. 2008, P03009.Google Scholar
da Cruz, F., Emam, S., Prochnow, M., Roux, J. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309.Google Scholar
Depken, M., Lechman, J. B., van Hecke, M., van Saarloos, W. & Grest, G. S. 2007 Stresses in smooth flows of dense granular media. Europhys. Lett. 78, 58001.Google Scholar
Drucker, D. C. & Prager, W. 1952 Soil mechanics and plastic analysis or limit design. Q. Appl. Maths 10, 157165.Google Scholar
Dunatunga, S. & Kamrin, K. 2015 Continuum modelling and simulation of granular flows through their many phases. J. Fluid Mech. 779, 483513.Google Scholar
Fenistein, D. & van Hecke, M. 2003 Wide shear zones in granular bulk flow. Nature 425, 256.Google Scholar
Fenistein, D., van de Meent, J. W. & van Hecke, M. 2004 Universal and wide shear zones in granular bulk flow. Phys. Rev. Lett. 92, 094301.Google Scholar
Forterre, Y. & Pouliquen, O. 2003 Long-surface-wave instability in dense granular flows. J. Fluid Mech. 486, 2150.Google Scholar
Goyon, J., Colin, A., Ovarlez, G., Ajdari, A. & Bocquet, L. 2008 Spatial cooperativity in soft glassy flows. Nature 454, 8487.Google Scholar
Henann, D. L. & Kamrin, K. 2013 A predictive, size-dependent continuum model for dense granular flows. Proc. Natl Acad. Sci. USA 110, 67306735.Google Scholar
Henann, D. L. & Kamrin, K. 2014a Continuum modeling of secondary rheology in dense granular materials. Phys. Rev. Lett. 113, 178001.Google Scholar
Henann, D. L. & Kamrin, K. 2014b Continuum thermomechanics of the nonlocal granular rheology. Intl J. Plasticity 60, 145162.Google Scholar
Henann, D. L. & Kamrin, K. 2016 A finite element implementation of the nonlocal granular rheology. Intl J. Numer. Meth. Engng 108, 273302.Google Scholar
Jop, P.2006 Écoulements granulaires sur fond meuble. PhD thesis, Université de Provence.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2005 Crucial role of sidewalls in granular surface flows: consequences for the rheology. J. Fluid Mech. 541, 167192.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.Google Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2007 Initiation of granular surface flows in a narrow channel. Phys. Fluids 19, 088102.Google Scholar
Kamrin, K. 2010 Nonlinear elasto-plastic model for dense granular flow. Intl J. Plasticity 26, 167188.Google Scholar
Kamrin, K. & Henann, D. L. 2015 Nonlocal modeling of granular flows down inclines. Soft Matt. 11, 179185.Google Scholar
Kamrin, K. & Koval, G. 2012 Nonlocal constitutive relation for steady granular flow. Phys. Rev. Lett. 108, 178301.Google Scholar
Komatsu, T. S., Inagaki, S., Nakagawa, N. & Nasuno, S. 2001 Creep motion in a granular pile exhibiting steady surface flow. Phys. Rev. Lett. 86, 17571760.Google Scholar
Koval, G., Roux, J.-N., Corfdir, A. & Chevoir, F. 2009 Annular shear of cohesionless granular materials: from the inertial to quasistatic regime. Phys. Rev. E 79, 021306.Google Scholar
Krishnaraj, K. P. & Nott, P. R. 2016 A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly. Nat. Commun. 7, 10630.Google Scholar
Lemieux, P. A. & Durian, D. J. 2000 From avalanches to fluid flow: a continuous picture of grain dynamics down a heap. Phys. Rev. Lett. 85, 42734276.Google Scholar
Losert, W., Bocquet, L., Lubensky, T. C. & Gollub, J. P. 2000 Particle dynamics in sheared granular matter. Phys. Rev. Lett. 85, 14281431.CrossRefGoogle ScholarPubMed
MiDi, G. D. R. 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.Google Scholar
Mohan, L. S., Rao, K. K. & Nott, P. R. 2002 A frictional Cosserat model for the slow shearing of granular materials. J. Fluid Mech. 457, 377409.Google Scholar
Mueth, D. E., Debregeas, G. F., Karczmar, G. S., Eng, P. J., Nagel, S. R. & Jaeger, H. M. 2000 Signatures of granular microstructure in dense shear flows. Nature 406, 385388.Google Scholar
Nichol, K., Zanin, A., Bastien, R., Wandersman, E. & van Hecke, M. 2010 Flow-induced agitations create a granular fluid. Phys. Rev. Lett. 104, 078302.Google Scholar
Pouliquen, O. 1999 Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11, 542548.CrossRefGoogle Scholar
Reddy, K. A., Forterre, Y. & Pouliquen, O. 2011 Evidence of mechanically activated processes in slow granular flows. Phys. Rev. Lett. 106, 108301.Google Scholar
Richard, P., Valance, A., Métayer, J.-F., Sanchez, P., Crassous, J., Louge, M. & Delannay, R. 2008 Rheology of confined granular flows: scale invariance, glass transition, and friction weakening. Phys. Rev. Lett. 24, 248002.Google Scholar
Ries, A., Brendel, L. & Wolf, D. E. 2016 Shearrate diffusion and constitutive relations during transients in simple shear. Comput. Part. Mech. 3, 303310.Google Scholar
Roy, S., Luding, S. & Weinhart, T. 2017 A general(ized) local rheology for wet granular materials. New J. Phys. 19, 043014.Google Scholar
Rycroft, C. H., Kamrin, K. & Bazant, M. Z. 2009 Assessing continuum postulates in simulations of granular flow. J. Mech. Phys. Solids 57, 828839.Google Scholar
Savage, S. B. 1998 Analyses of slow high-concentration flows of granular materials. J. Fluid Mech. 377, 126.Google Scholar
Schofield, A. & Wroth, C. 1968 Critical State Soil Mechanics. McGraw-Hill.Google Scholar
Scott, G. D. 1960 Packing of spheres. Nature 188, 908909.Google Scholar
Siavoshi, S., Orpe, A. V. & Kudrolli, A. 2006 Friction of a slider on a granular layer: nonmonotonic thickness dependence and effect of boundary conditions. Phys. Rev. E 73, 010301(R).Google Scholar
Silbert, L. E., Landry, J. W. & Grest, G. S. 2003 Granular flow down a rough inclined plane: transition between thin and thick piles. Phys. Fluids 15, 110.Google Scholar
Singh, A., Magnanimo, V., Saitoh, K. & Luding, S. 2015 The role of gravity or pressure and contact stiffness in granular rheology. New J. Phys. 17, 043028.Google Scholar
Taberlet, N., Richard, P., Valance, A., Losert, W., Pasini, J. M., Jenkins, J. T. & Delannay, R. 2003 Superstable granular heap in a thin channel. Phys. Rev. Lett. 91, 264301.Google Scholar
Weinhart, T., Hartkamp, R., Thornton, A. R. & Luding, S. 2013 Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25, 070605.CrossRefGoogle Scholar
Weinhart, T., Thornton, A. R., Luding, S. & Bokhove, O. 2012 Closure relations for shallow granular flows from particle simulations. Granul. Matt. 14, 531552.Google Scholar
Zhang, Q. & Kamrin, K. 2017 Microscopic description of the granular fluidity field in nonlocal flow modeling. Phys. Rev. Lett. 118, 058001.Google Scholar