Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2025-01-01T08:41:33.306Z Has data issue: false hasContentIssue false

A non-linear instability theory for a wave system in plane Poiseuille flow

Published online by Cambridge University Press:  29 March 2006

K. Stewartson
Affiliation:
Department of Mathematics, University College, London
J. T. Stuart
Affiliation:
Department of Mathematics, University College, London Department of Mathematics, Imperial College, London

Abstract

The initial-value problem for linearized perturbations is discussed, and the asymptotic solution for large time is given. For values of the Reynolds number slightly greater than the critical value, above which perturbations may grow, the asymptotic solution is used as a guide in the choice of appropriate length and time scales for slow variations in the amplitude A of a non-linear two-dimensional perturbation wave. It is found that suitable time and space variables are εt and ε½(x+a1rt), where t is the time, x the distance in the direction of flow, ε the growth rate of linearized theory and (−a1r) the group velocity. By the method of multiple scales, A is found to satisfy a non-linear parabolic differential equation, a generalization of the time-dependent equation of earlier work. Initial conditions are given by the asymptotic solution of linearized theory.

Type
Research Article
Copyright
© 1971 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1961 J. Fluid Mech. 10, 401419.
Coles, D. 1965 J. Fluid Mech. 21, 385425.
Davey, A. 1962 J. Fluid Mech. 14, 336368.
Davey, A. & Nguyen, H. P. F. 1971 J. Fluid Mech. 45, 701720.
Davies, S. J. & White, C. M. 1928 Proc. Roy. Soc. A 119, 92107.
Di Prima, R. C., Eckhaus, W. & Segel, L. A. 1971 to be published J. Fluid Mech.
Di Prima, R. C. & Grannick, R. N. 1969 Proc. I.U.T.A.M. Symp. Stab. Cont. Syst. Herrenalb.
Eckhaus, W. 1965 Studies in Non-Linear Stability Theory. Springer.
Ellingsen, T., Gjevik, B. & Palm, E. 1970 J. Fluid Mech. 40, 97112.
Gaster, M. 1962 J. Fluid Mech. 14, 222224.
Gaster, M. 1968a Phys. Fluids, 11, 723727.
Gaster, M. 1968b J. Fluid Mech. 32, 173184.
Grosch, C. E. & Salwen, H. 1968 J. Fluid Mech. 34, 177205.
KirchgÄssner, K. & Sorger, P. 1969 Quart. J. Mech. Appl. Math. 22, 183210.
Krueger, E. R., Gross, A. E. & Di Prima, R. C. 1966 J. Fluid Mech. 26, 521538.
Landau, L. D. 1944 C.R. Acad. Sci. U.R.S.S. 44, 311314.
Meksyn, D. & Stuart, J. T. 1951 Proc. Roy. Soc A 208, 517526.
Nachtsheim, P. R. 1964 N.A.S.A. TN D 2414.
Newell, A. C. & Whitehead, J. A. 1969 J. Fluid Mech. 38, 279304.
Pekeris, C. L. & Shkoller, B. 1967 J. Fluid Mech. 29, 3138.
Pekeris, C. L. & Shkoller, B. 1969 J. Fluid Mech. 39, 629639.
Reynolds, W. C. & Potter, M. C. 1967a J. Fluid Mech. 27, 465492.
Reynolds, W. C. & Potter, M. C. 1967b Unpublished Stanford University Paper.
Segel, L. A. 1969 J. Fluid Mech. 38, 203224.
Stuart, J. T. 1960 J. Fluid Mech. 9, 353370.
Thomas, L. H. 1953 Phys. Rev. 91, 780783.
Velte, W. 1966 Arch. Rat. Mech. Anal. 22, 114.
Van Dyke, M. 1964 Perturbation Methods in Fluid Mechanics. Academic.
Watson, J. 1960 J. Fluid Mech. 9, 371389.
Watson, J. 1962 J. Fluid Mech. 14, 211221.