Article contents
Nonlinear dynamics of electrostatic Faraday instability in thin films
Published online by Cambridge University Press: 21 September 2018
Abstract
The nonlinear evolution of an interface between a perfect conducting liquid and a perfect dielectric gas subject to periodic electrostatic forcing is studied under the long-wave approximation. It is shown that inertial thin films become unstable to finite-wavelength Faraday modes at the onset, prior to the long-wave pillaring instability reported in the lubrication limit. It is further shown that the pillaring-mode instability is subcritical in nature, with the interface approaching either the top or the bottom wall, depending on the liquid–gas holdup. On the other hand, the Faraday modes exhibit subharmonic or harmonic oscillations that nonlinearly saturate to standing waves at low forcing amplitudes. Unlike the pillaring mode, wherein the interface approaches the wall, Faraday modes may exhibit saturated standing waves when the instability is subcritical. At higher forcing amplitudes, the interface may approach either wall, again depending on the liquid–gas holdup. It is also shown that a gravitationally unstable configuration of such thin films, under the long-wave approximation, cannot be stabilized by periodic electrostatic forcing, unlike mechanical Faraday forcing. In this case, it is observed that the interface exhibits oscillatory sliding behaviour, approaching the wall in an ‘earthworm-like’ motion.
- Type
- JFM Rapids
- Information
- Copyright
- © 2018 Cambridge University Press
References
Pillai Supplementary Movie 1
Spatiotemporal evolution of the interface in the pillaring mode for low liquid-gas holdup (k=0.1, A=28.5kV, β=10)
Pillai Supplementary Movie 2
Spatiotemporal evolution of the interface, depicting the subharmonic (k=0.19, A=5.6kV) and harmonic (k=0.33, A=8.1kV) Faraday responses.
- 11
- Cited by