Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T03:58:10.814Z Has data issue: false hasContentIssue false

Nonlinear dynamics of capillary bridges: theory

Published online by Cambridge University Press:  26 April 2006

Tay-Yuan Chen
Affiliation:
Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA
John Tsamopoulos
Affiliation:
Department of Chemical Engineering, State University of New York at Buffalo, Buffalo, NY 14260, USA

Abstract

Finite-amplitude, forced and free oscillations of capillary bridges are studied. They are characterized by a resonant frequency and a damping rate which, in turn, depend on fluid properties, dimensions of the bridge, gravitational force relative to surface tension and amplitude of the external disturbance. The Navier–Stokes equations are solved numerically using the Galerkin/finite-element methodology for discretization in space and implicit finite differences with adaptive time stepping for discretization in time. It is found that the resonant frequency decreases and the damping rate increases almost linearly with the oscillation amplitude. Their relative changes from their corresponding values at infinitesimal amplitude depend on fluid properties and dimensions of the bridge. Moreover, careful measurement of the resonant frequency and damping rate in a well-controlled experiment may provide quite accurate values for properties of the liquid over a wide range of modified Reynolds numbers.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Basaran, O. A. 1992 Nonlinear oscillations of viscous liquid drop. J. Fluid Mech. 241, 169198.Google Scholar
Benjamin, T. B. & Scott, J. C. 1979 Gravity–capillary waves with edge constraints. J. Fluid Mech. 92, 241267.Google Scholar
Borkar, A. & Tsamopoulos, J. A. 1991 Boundary-layer analysis of the dynamics of axisymmetric capillary bridges. Phys. Fluids A 3, 28662874.Google Scholar
Brown, R. A. 1988 Theory of transport processes in single crystal growth from the melt. AIChE J. 34, 881911.Google Scholar
Chen, T.-Y. 1991 Static and dynamic analysis of capillary bridges. PhD thesis, State University of New York at Buffalo.
Chen, T.-Y., Tsamopoulos, J. A. & Good, R. J. 1991 Capillary bridges between parallel and nonparallel surfaces and their stability. J. Colloid Interface Sci. 151, 4969.Google Scholar
Derby, J. J. & Brown, R. A. 1986 A fully implicit method for simulation of the one-dimensional solidification of a binary alloy. Chem. Engng Sci. 41, 3746.Google Scholar
Duranceau, J. L. & Brown, R. A. 1986 Thermal capillary analysis of small-scale floating zones: Steady-state calculations. J. Cryst. Growth 75, 367389.Google Scholar
Duranceau, J. L. & Brown, R. A. 1988 Finite element analysis of melt convection and interface morphology in earthbound and microgravity floating zones. AIP Conf. Proc. vol. 197 (ed. T. G. Wang), pp. 133144.
Ennis, B., Li, J., Tardos, G. & Pfeffer, R. 1990 The influence of viscosity on the strength of an axially strained pendular liquid bridge. Chem. Engng Sci. 45, 30713088.Google Scholar
Ettouney, H. M. & Brown, R. A. 1983 Finite element methods for steady solidification problems. J. Comput. Phys. 49, 118150.Google Scholar
Fowle, A. A., Wang, C. A. & Strong, P. F. 1979 Experiments on the stability of conical and cylindrical liquid columns at low Bond numbers. Arthur D. Little Co. Ref. C-82435.
Fratello, V. J. & Brandtle, C. D. 1991 Thermophysical properties of LiCaAlF6 melt. J. Cryst. Growth 109, 334339.Google Scholar
Fratello, V. J. & Brandtl, C. D. 1993 Physical properties of Y3Al5O12 melt. J. Cryst. Growth (to appear.)Google Scholar
Gresho, P. M., Lee, R. L. & Sani, R. L. 1980 On the time-dependent solution of the incompressible Navier–Stokes equations in two and three dimensions. In Recent Adv. Numer. Meth. Fluids, vol. 1 (ed. C. Taylor & K. Morgan), pp. 2779. Swansea: Pineridge.
Harriott, G. M. & Brown, R. A. 1984 Flow in a differentially rotated cylindrical drop at moderate Reynolds number. J. Fluid Mech. 144, 403418.Google Scholar
Keunings, R. 1986 An algorithm for the simulation of transient viscoelastic flows with free surfaces. J. Comput. Phys. 62, 199220.Google Scholar
Kheshgi, H. S. & Scriven, L. E. 1984 Penalty finite element analysis of unsteady free-surface flows. In Finite Elements in Fluids, vol. 5 (ed. R. H. Gallagher, J. T. Oden, O. C. Zienkiewicz, T. Kawai & M. Kawahara), pp. 393434. John Wiley & Sons.
Kingery, W. D. 1959 Surface tension of some liquid oxides and their temperature coefficients, J. Am. Ceram. Soc. 42, 610.Google Scholar
Kistler, S. F. & Scriven, L. E. 1983 Coating flows. In Computational Analysis of Polymer Processing (ed. J. R. A. Pearson & S. M. Richardson), pp. 243299. Applied Science Publishers.
Laplace, P. S. 1805 Theory of capillary attractions. Supplement to the Tenth Book of Celestial Mechanics (translated and annotated by N. Bowditch, 1839.) Reprinted by Chelsea, New York, 1966.
Luther, L. C. 1986 Garnet melt viscosity, surface tension and drainage. J. Cryst. Growth 75, 401407.Google Scholar
Mackenzie, J. D. 1956 The viscosity, molar volume and electric conductivity of liquid boron trioxide. Trans. Faraday Soc. 52, 15641568.Google Scholar
Mason, G. 1970 An experimental determination of the stable length of cylindrical liquid bridges. J. Colloid Interface Sci. 32, 172176.Google Scholar
Melrose, J. C. 1966 Model calculations for capillary condensation. AIChE J. 12, 986994.Google Scholar
Meseguer, J. 1983 The breaking of axisymmetric slender liquid bridges. J. Fluid Mech. 130, 123151.Google Scholar
Mollot, D. J., Tsamopoulos, J. A., Chen, T.-Y. & Ashgriz, N. 1993 Nonlinear dynamics of capillary bridges: experiments. J. Fluid Mech. 255, 411435.Google Scholar
Padday, J. F. 1971 The profiles of axially symmetric menisci. Phil. Trans. R. Soc. Lond. A 269, 265293.Google Scholar
Plateau, J. A. F. 1863 Experimental and theoretical researchers on the figures of equilibrium of a liquid mass withdrawn from the action of gravity. Translated in Ann. Rep. Smithsonian Inst., pp. 207285.
Poslinski, A. J. & Tsamopoulos, J. A. 1991 Inflation dynamics of fluid annular menisci inside a mold cavity – I. Deformation driven by small gas pressures. Chem. Engng Sci. 46, 215232.Google Scholar
Preiser, F., Schwabe, D. & Scharmann, A. 1983 Steady and oscillatory thermocapillary convection in liquid columns with a free cylindrical surface, J. Fluid Mech. 126, 545567.Google Scholar
Rayleigh, Lord 1879 On the instability of jets. Proc. Lond. Math. Soc. 10, 413.Google Scholar
Rivas, D. & Meseguer, J. 1984 One-dimensional self-similar solution of the dynamics of axisymmetric slender liquid bridges. J. Fluid Mech. 138, 417429.Google Scholar
Sanz, A. 1985 The influence of the outer bath in the dynamics of axisymmetric liquid bridges. J. Fluid Mech. 156, 101140.Google Scholar
Thomas, P. D. & Brown, R. A. 1987 LU decomposition of matrices with augmented dense constraints. Intl J. Numer. Meth. Engng 24, 14511459.Google Scholar
Tsamopoulos, J. A. & Brown, R. A. 1983 Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519537.Google Scholar
Tsamopoulos, J. A. & Brown, R. A. 1984 Resonant oscillations of inviscid charged drops. J. Fluid Mech. 147, 373395.Google Scholar
Tsamopoulos, J. A., Chen, T.-Y. & Borkar, A. 1992 Viscous oscillations of capillary bridges. J. Fluid Mech. 235, 579609.Google Scholar
Tsamopoulos, J. A., Poslinski, A. J. & Ryan, M. E. 1988 Equilibrium shapes and stability of captive annular menisci. J. Fluid Mech. 197, 523549.Google Scholar
Young, T. 1805 Essay on the cohesion of fluids. Phil. Trans. R. Soc. Lond. A 306, 347370.Google Scholar
Zasadzinski, J. N., Sweeney, J. B., Davis, H. T. & Scriven, L. E. 1987 Finite element calculations of fluid menisci and thin-films in a model porous media. J. Colloid Interface Sci. 119, 108116.Google Scholar