Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T13:15:30.126Z Has data issue: false hasContentIssue false

Nonlinear disturbance growth during sedimentation in dilute fibre suspensions

Published online by Cambridge University Press:  19 February 2013

Feng Zhang
Affiliation:
Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology, Stockholm S-100 44, Sweden
Anders A. Dahlkild*
Affiliation:
Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology, Stockholm S-100 44, Sweden
Fredrik Lundell
Affiliation:
Linné FLOW Centre, KTH Mechanics, Royal Institute of Technology, Stockholm S-100 44, Sweden Wallenberg Wood Science Centre, KTH Mechanics, Royal Institute of Technology, Stockholm S-100 44, Sweden
*
Email address for correspondence: [email protected]

Abstract

Disturbances in a dilute fibre suspension are studied with an Eulerian approach. Based on a linear stability analysis, it is shown that inertia and hydrodynamic diffusion damp perturbations at long wavelengths and short wavelengths, respectively, leading to a wavenumber selection. For small but finite Reynolds number of the fluid bulk motion, the most unstable wavenumber is a finite value, which increases with Reynolds number. Furthermore, the diffusion narrows the range of unstable wavenumbers. Numerical simulations of the full nonlinear evolution in time of a normal-mode perturbation show that the induced flow may either die out or saturate on a finite amplitude. The character of this long-time behaviour is dictated by the wavenumber and the presence or absence, as well as nature, of the translational and rotational diffusivities.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Butler, J. E. & Shaqfeh, E. S. G. 2002 Dynamic simulations of the inhomogeneous sedimentation of rigid fibres. J. Fluid Mech. 468, 205237.Google Scholar
Dahlkild, A. 2011 Finite wavelength selection for the linear instability of a suspension of settling spheroids. J. Fluid Mech. 689, 183202.Google Scholar
Davis, R. H. 1996 Hydrodynamic diffusion of suspended particles: a symposium. J. Fluid Mech. 310, 325335.CrossRefGoogle Scholar
Folgar, F. & Tucker, C. L. 1984 Orientation behaviour of fibres in concentrated suspensions. J. Reinf. Plast. Composites 3 (2), 98119.Google Scholar
Gustavsson, K. & Tornberg, A.-K. 2009 Gravity induced sedimentation of slender fibres. Phys. Fluids 21, 123301.Google Scholar
Herzhaft, B. & Guazzelli, É. 1999 Experimental study of the sedimentation of dilute and semi-dilute suspensions of fibres. J. Fluid Mech. 384, 133158.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Khayat, R. E. & Cox, R. G. 1989 Inertia effects on the motion of long slender bodies. J. Fluid Mech. 209, 435462.Google Scholar
Koch, D. L. 1995 A model for orientational diffusion in fibre suspensions. Phys. Fluids 7 (8), 20862088.CrossRefGoogle Scholar
Koch, D. L. & Shaqfeh, E. S. G. 1989 The instability of a dispersion of sedimenting spheroids. J. Fluid Mech. 209, 521542.CrossRefGoogle Scholar
Kuusela, E., Lahtinen, J. M. & Ala-Nissila, T. 2003 Collective effects in settling of spheroids under steady-state sedimentation. Phys. Rev. Lett. 90 (9), 094502.Google Scholar
Mackaplow, M. B. & Shaqfeh, E. S. G. 1998 A numerical study of the sedimentation of fibre suspensions. J. Fluid Mech. 376, 149182.Google Scholar
Metzger, B., Butler, J. E. & Guazzelli, É. 2007a Experimental investigation of the instability of a sedimenting suspension of fibres. J. Fluid Mech. 575, 307332.Google Scholar
Metzger, B., Butler, J. E. & Guazzelli, É. 2007b On wavelength selection by stratification in the instability of settling fibres. Phys. Fluids 19, 098105.Google Scholar
Phelps, J. H., Charles, L. & Tucker, C. L. 2009 An anisotropic rotary diffusion model for fibre orientation in short and long fibre thermoplastics. J. Non-Newtonian Fluid Mech. 156 (3), 165176.Google Scholar
Rahnama, M., Koch, D. L. & Cohen, C. 1995a Observations of fibre orientation in suspensions subjected to planar extensional flows. Phys. Fluids 7 (8), 18111817.Google Scholar
Rahnama, M., Koch, D. L. & Shaqfeh, E. S. G. 1995b The effect of hydrodynamic interactions on the orientation distribution in a fibre suspension subject to simple shear flow. Phys. Fluids 7 (3), 487506.CrossRefGoogle Scholar
Ranganathan, S. & Advani, S. G. 1991 Fiber-fibre interactions in homogeneous flows of nondilute suspensions. J. Rheol. 35 (8), 14991522.Google Scholar
Saintillan, D., Darve, E. & Shaqfeh, E. S. G. 2005 A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: the sedimentation of fibres. Phys. Fluids 17 (3), 033301.Google Scholar
Saintillan, D, Shaqfeh, E. S. G. & Darve, E 2006a The effect of stratification on the wavenumber selection in the instability of sedimenting spheroids. Phys. Fluids 18 (12), 121503.Google Scholar
Saintillan, D., Shaqfeh, E. S. G. & Darve, E. 2006b The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation. J. Fluid Mech. 553, 347388.Google Scholar
Salmela, J., Martinez, D. M. & Kataja, M. 2007 Settling of dilute and semidilute fibre suspensions at finite Re. AIChE J. 53 (8), 19161923.CrossRefGoogle Scholar
Shin, M., Koch, D. L. & Subramanian, G. 2006 A pseudospectral method to evaluate the fluid velocity produced by an array of translating slender fibres. Phys. Fluids 18 (6), 063301.Google Scholar
Shin, M., Koch, D. L. & Subramanian, G. 2009 Structure and dynamics of dilute suspensions of finite-Reynolds-number settling fibres. Phys. Fluids 21 (12), 123304.Google Scholar
Subramanian, G. & Koch, D. L. 2005 Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535, 383414.Google Scholar
Tornberg, A.-K. & Gustavsson, K. 2006 A numerical method for simulations of rigid fibre suspensions. J. Comput. Phys. 215 (1), 172196.Google Scholar

Zhang et al. supplementary movie

Time evolution of Ψ only with translational diffusion.

Download Zhang et al. supplementary movie(Video)
Video 5.5 MB