Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T13:41:54.071Z Has data issue: false hasContentIssue false

Non-Gaussianity in turbulent relative dispersion

Published online by Cambridge University Press:  29 March 2019

B. J. Devenish*
Affiliation:
Met Office, FitzRoy Road, Exeter EX1 3PB, UK
D. J. Thomson
Affiliation:
Met Office, FitzRoy Road, Exeter EX1 3PB, UK
*
Email address for correspondence: [email protected]

Abstract

We present an extension of Thomson’s (J. Fluid Mech., vol. 210, 1990, pp. 113–153) two-particle Lagrangian stochastic model that is constructed to be consistent with the $4/5$ law of turbulence. The rate of separation in the new model is reduced relative to the original model with zero skewness in the Eulerian longitudinal relative velocity distribution and is close to recent measurements from direct numerical simulations of homogeneous isotropic turbulence. The rate of separation in the equivalent backwards dispersion model is approximately a factor of 2.9 larger than the forwards dispersion model, a result that is consistent with previous work.

Type
JFM Papers
Copyright
© Crown Copyright. Published by Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baerentsen, J. H. & Berkowicz, R. 1984 Monte Carlo simulation of plume dispersion in the convective boundary layer. Atmos. Environ. 18, 701712.Google Scholar
Berg, J., Lüthi, B., Mann, J. & Ott, S. 2006 Backwards and forwards relative dispersion in turbulent flow: an experimental investigation. Phys. Rev. E 74, 016304.Google Scholar
Borgas, M. S. & Sawford, B. L. 1994 A family of stochastic models for two-particle dispersion in isotropic homogeneous stationary turbulence. J. Fluid Mech. 279, 6999.Google Scholar
Borgas, M. S. & Yeung, P. K. 2004 Relative dispersion in isotropic turbulence. Part 2. A new stochastic model with Reynolds-number dependence. J. Fluid Mech. 503, 125160.Google Scholar
Bragg, A. D., Ireland, P. J. & Collins, L. R. 2016 Forward and backward in time dispersion of fluid and inertial particles in isotropic turbulence. Phys. Fluids 28, 013305.Google Scholar
Buaria, D., Sawford, B. L. & Yeung, P. K. 2015 Characteristics of backward and forward two-particle relative dispersion in turbulence at different Reynolds numbers. Phys. Fluids 27, 105101.Google Scholar
Devenish, B. J. & Thomson, D. J. 2011 Pair reversal in homogeneous isotropic turbulence. J. Phys.: Conf. Ser. 318, 042021.Google Scholar
Egbert, G. D. & Baker, M. B. 1984 Comments on paper ‘The effect of Gaussian particle–pair distribution functions in the statistical theory of concentration fluctuations in homogeneous turbulence’ by B. L. Sawford (Q.J. April 1983, 109, 339–353). Q. J. R. Meteorol. Soc. 110, 11951199.Google Scholar
Hudson, B. & Thomson, D. J.1994 Dispersion in convective and neutral boundary-layers using a random walk model. Turbulence and Diffusion Note 210. Met Office.Google Scholar
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165180.Google Scholar
Kurbanmuradov, O. A. 1997 Stochastic Lagrangian models for two-particle relative dispersion in high-Reynolds number turbulence. Monte Carlo Meth. Applic. 3, 3752.Google Scholar
Luhar, A. K. & Britter, R. E. 1989 A random walk model for dispersion in inhomogeneous turbulence in a convective boundary layer. Atmos. Environ. 23, 19111924.Google Scholar
Mann, J., Ott, S. & Andersen, J. S.1999 Experimental study of relative turbulent diffusion. Risø-R-1036(EN). Risø National Laboratory.Google Scholar
Monin, A. S. & Yaglom, A. M. 1971 Statistical Fluid Mechanics, vol. I. MIT Press.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics, vol. II. MIT Press.Google Scholar
Obukhov, A. 1941 Spectral energy distribution in a turbulent flow. Izv. Akad. Nauk SSSR, Ser. Geogr. Geofiz. 5, 453466.Google Scholar
Pagnini, G. 2008 Lagrangian stochastic models for turbulent relative dispersion based on particle pair rotation. J. Fluid Mech. 616, 357395.Google Scholar
Papoulis, A. 1991 Probability, Random Variables and Stochastic Processes, 3rd edn. McGraw-Hill.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Richardson, L. F. 1926 Atmospheric diffusion shown on a distance-neighbour graph. Proc. R. Soc. Lond. A 110, 709737.Google Scholar
Risken, H. 1989 The Fokker–Planck Equation, 2nd edn. Springer.Google Scholar
Salazar, J. P. L. C. & Collins, L. R. 2009 Two-particle dispersion in isotropic turbulent flows. Annu. Rev. Fluid Mech. 41, 405432.Google Scholar
Sawford, B. L. 2006 A study of the connection between exit-time statistics and relative dispersion using a simple Lagrangian stochastic model. J. Turbul. 7, N13.Google Scholar
Sawford, B. L. & Guest, F. M. 1988 Uniqueness and universality of Lagrangian stochastic models of turbulent dispersion. In Proc. 8th Symp. Turb. Diff, San Diego, pp. 9699. American Mathematical Society.Google Scholar
Sawford, B. L. & Yeung, P. K. 2010 Conditional relative acceleration statistics and relative dispersion modelling. Flow Turbul. Combust. 85, 345362.Google Scholar
Sawford, B. L. & Yeung, P. K. 2011 Kolmogorov similarity scaling for one-particle Lagrangian statistics. Phys. Fluids 23, 091704.Google Scholar
Sawford, B. L., Yeung, P. K. & Borgas, M. S. 2005 Comparison of backwards and forwards relative dispersion in turbulence. Phys. Fluids 17, 095109.Google Scholar
Thomson, D. J. 1987 Criteria for the selection of stochastic models of particle trajectories in turbulent flows. J. Fluid Mech. 180, 529556.Google Scholar
Thomson, D. J. 1990 A stochastic model for the motion of particle pairs in isotropic high-Reynolds-number turbulence, and its application to the problem of concentration variance. J. Fluid Mech. 210, 113153.Google Scholar
Thomson, D. J. & Devenish, B. J.2003 Particle pair separation in kinematic simulations. Turbulence and Diffusion Note 289, Met Office.Google Scholar
Wilson, J. D. & Sawford, B. L. 1996 Review of Lagrangian stochastic models for trajectories in the turbulent atmosphere. Boundary-Layer Meteorol. 78, 191210.Google Scholar
Yeung, P. K. 2002 Lagrangian investigations of turbulence. Annu. Rev. Fluid Mech. 34, 114142.Google Scholar