Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-25T06:25:45.220Z Has data issue: false hasContentIssue false

Multiscale tip asymptotics in hydraulic fracture with leak-off

Published online by Cambridge University Press:  16 February 2011

DMITRY I. GARAGASH*
Affiliation:
Dalhousie University, Department of Civil and Resource Engineering, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada
EMMANUEL DETOURNAY
Affiliation:
University of Minnesota, Department of Civil Engineering, 500 Pillsbury Drive, Minneapolis, MN 55455, USA, and CSIRO Earth Science and Resource Engineering, Technology Park, Kensington, WA 6151, Australia
JOSE I. ADACHI
Affiliation:
Schlumberger DCS, 1325 South Dairy Ashford Road, Houston, TX 77077, USA
*
Email address for correspondence: [email protected]

Abstract

This paper is concerned with an analysis of the near-tip region of a fluid-driven fracture propagating in a permeable saturated rock. The analysis is carried out by considering the stationary problem of a semi-infinite fracture moving at constant speed V. Two basic dissipative processes are taken into account: fracturing of the rock and viscous flow in the fracture, and two fluid balance mechanisms are considered – leak-off and storage of the fracturing fluid in the fracture. It is shown that the solution is characterized by a multiscale singular behaviour at the tip, and that the nature of the dominant singularity depends both on the relative importance of the dissipative processes and on the scale of reference. This solution provides a framework to understand the interaction of representative physical processes near the fracture tip, as well as to track the changing nature of the dominant tip process(es) with the tip velocity and its impact on the global fracture response. Furthermore, it gives a universal scaling of the near-tip processes on the scale of the entire fracture and sets the foundation for developing efficient numerical algorithms relying on accurate modelling of the tip region.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abé, H., Mura, T. & Keer, L. M. 1976 Growth rate of a penny-shaped crack in hydraulic fracturing of rocks. J. Geophys. Res. 81, 53355340.CrossRefGoogle Scholar
Adachi, J. I. & Detournay, E. 2002 Self-similar solution of a plane-strain fracture driven by a power-law fluid. Intl J. Numer. Anal. Meth. Geomech. 26, 579604.CrossRefGoogle Scholar
Adachi, J. I. & Detournay, E. 2008 Plane-strain propagation of a hydraulic fracture in a permeable rock. Engng Fract. Mech. 75, 46664694.CrossRefGoogle Scholar
Advani, S. H., Torok, J. S., Lee, J. K. & Choudhry, S. 1987 Explicit time-dependent solutions and numerical evaluations for penny-shaped hydraulic fracture models. J. Geophys. Res. 92 (B8), 80498055.CrossRefGoogle Scholar
Barenblatt, G. I. 1956 On the formation of horizontal cracks in hydraulic fracture of an oil-bearing stratum. Prikl. Mat. Mech. 20, 475486.Google Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Bilby, B. & Eshelby, J. 1968 Dislocations and the theory of fracture. In Fracture, an Advanced Treatise (ed. Liebowitz, H.), vol. I, chapter 2, pp. 99182. Academic.Google Scholar
Bunger, A. P. & Detournay, E. 2007 Early time solution for a penny-shaped hydraulic fracture. ASCE J. Engng Mech. 133 (5), 534540.CrossRefGoogle Scholar
Bunger, A. P. & Detournay, E. 2008 Experimental validation of the tip asymptotics for a fluid-driven crack. J. Mech. Phys. Solids 56, 31013115.CrossRefGoogle Scholar
Bunger, A. P., Detournay, E. & Garagash, D. I. 2005 Toughness-dominated hydraulic fracture with leak-off. Intl J. Fract. 134, 175190.CrossRefGoogle Scholar
Carbonell, R., Desroches, J. & Detournay, E. 1999 A comparison between a semi-analytical and a numerical solution of a two-dimensional hydraulic fracture. Intl J. Solids Struct. 36 (31–32), 48694888.CrossRefGoogle Scholar
Carter, E. 1957 Optimum fluid characteristics for fracture extension. In Drilling and Production Practices (ed. Howard, G. & Fast, C.), pp. 261270. American Petroleum Institute.Google Scholar
Desroches, J., Detournay, E., Lenoach, B., Papanastasiou, P., Pearson, J. R. A., Thiercelin, M. & Cheng, A. H.-D. 1994 The crack tip region in hydraulic fracturing. Proc. R. Soc. Lond. A 447, 3948.Google Scholar
Detournay, E. & Garagash, D. 2003 The tip region of a fluid-driven fracture in a permeable elastic solid. J. Fluid Mech. 494, 132.CrossRefGoogle Scholar
Detournay, E. & Garagash, D. I. 2010 General scaling laws for fluid-driven fractures. Proc. R. Soc. Lond. A (submitted).Google Scholar
Economides, M. J. & Nolte, K. G. 2000 Reservoir Stimulation. Wiley.Google Scholar
Emerman, S., Turcotte, D. & Spence, D. 1986 Transport of magma and hydrothermal solutions by laminar and turbulent fluid fracture. Phys. Earth Planet. Intl 36, 276284.CrossRefGoogle Scholar
Garagash, D. I. 2006 a Plane strain propagation of a fluid-driven fracture during injection and shut-in: asymptotics of large toughness. Engng Frac. Mech. 73, 456481.CrossRefGoogle Scholar
Garagash, D. I. 2006 b Propagation of a plane-strain hydraulic fracture with a fluid lag: early-time solution. Intl J. Solids Struct. 43, 58115835.CrossRefGoogle Scholar
Garagash, D. I. 2006 c Transient solution for a plane-strain fracture driven by a shear-thinning, power-law fluid. Intl J. Numer. Anal. Meth. Geomech. 30 (14), 14391475.CrossRefGoogle Scholar
Garagash, D. I. 2009 Scaling of physical processes in fluid-driven fracture: perspective from the tip. In IUTAM Symposium on Scaling in Solid Mechanics (ed. Borodich, F.), IUTAM Bookseries, vol. 10, pp. 91100. Springer.CrossRefGoogle Scholar
Garagash, D. I. 2010 Plane-strain propagation of a fluid-driven fracture in a permeable medium: leak-off dominated regime. Intl J. Solids Struct. (submitted).Google Scholar
Garagash, D. I. & Detournay, E. 2000 The tip region of a fluid-driven fracture in an elastic medium. ASME J. Appl. Mech. 67 (1), 183192.CrossRefGoogle Scholar
Garagash, D. I. & Detournay, E. 2005 Plane-strain propagation of a fluid-driven fracture: small toughness solution. ASME J. Appl. Mech. 72 (6), 916928.CrossRefGoogle Scholar
Geertsma, J. & Haafkens, R. 1979 A comparison of the theories for predicting width and extent of vertical hydraulically induced fractures. ASME J. Energy Res. Tech. 101, 819.CrossRefGoogle Scholar
Geertsma, J. & de Klerk, F. 1969 A rapid method of predicting width and extent of hydraulic induced fractures. J. Petrol. Tech. 246, 15711581.CrossRefGoogle Scholar
Hu, J. & Garagash, D. I. 2010. Plane-strain fluid-driven fracture propagation in a permeable rock of finite toughness. ASCE J. Eng. Mech. 136, 11521156.CrossRefGoogle Scholar
Irwin, G. R. 1957 Analysis of stresses and strains near the end of a crack traversing a plate. ASME J. Appl. Mech. 29, 361364.CrossRefGoogle Scholar
Kanninen, M. F. & Popelar, C. H. 1985 Advanced Fracture Mechanics. The Oxford Engineering Science Series, vol. 15. Oxford University Press.Google Scholar
Khristianovic, S. & Zheltov, Y. 1955 Formation of vertical fractures by means of highly viscous fluids. In Proceedings of the 4th World Petroleum Congress, Rome, vol. 2, pp. 579586. Carlo Colombo Publishers.Google Scholar
Lecampion, B. & Detournay, E. 2007 An implicit algorithm for the propagation of a hydraulic fracture with a fluid lag. Comput. Meth. Appl. Mech. Engng 196, 48634880.CrossRefGoogle Scholar
Lenoach, B. 1995 The crack tip solution for hydraulic fracturing in a permeable solid. J. Mech. Phys. Solids 43 (7), 10251043.CrossRefGoogle Scholar
Lister, J. R. 1990 Buoyancy-driven fluid fracture: the effects of material toughness and of low-viscosity precursors. J. Fluid Mech. 210, 263280.CrossRefGoogle Scholar
Madyarova, M. & Detournay, E. 2010 Fluid-driven penny-shaped fracture in permeable rock. Intl J. Numer. Anal. Meth. Geomech. (submitted).Google Scholar
Mendelsohn, D. A. 1984 A review of hydraulic fracture modeling. Part I. General concepts, 2D models, motivation for 3D modeling. ASME J. Energy Res. Tech. 106, 369376.CrossRefGoogle Scholar
Nordgren, R. 1972 Propagation of vertical hydraulic fractures. J. Petrol. Tech. 253, 306314.Google Scholar
Peirce, A. P. 2010 A Hermite cubic collocation scheme for plane strain hydraulic fracture problems. Comput. Meth. Appl. Mech. Engng 199, 19491962.CrossRefGoogle Scholar
Peirce, A. & Detournay, E. 2008 An implicit level set method for modeling hydraulically driven fractures. Comput. Meth. Appl. Mech. Engng 197, 28582885.CrossRefGoogle Scholar
Perkins, T. K. & Kern, L. R. 1961 Widths of hydraulic fractures. J. Petrol. Tech. 222, 937949.CrossRefGoogle Scholar
Rice, J. R. 1968 Mathematical analysis in the mechanics of fracture. In Fracture: An Advanced Treatise (ed. Liebowitz, H.), vol. II, chapter 3, pp. 191311. Academic.Google Scholar
Rubin, A. 1993 Tensile fracture of rock at high confining pressure: implications for dike propagation. J. Geophys. Res. 98, 1591915935.CrossRefGoogle Scholar
Rubin, A. 1995 Propagation of magma-filled cracks. Annu. Rev. Earth Planet. Sci. 23, 287336.CrossRefGoogle Scholar
Savitski, A. & Detournay, E. 2002 Propagation of a fluid-driven penny-shaped fracture in an impermeable rock: asymptotic solutions. Intl J. Solids Struct. 39 (26), 63116337.CrossRefGoogle Scholar
Spence, D., Sharp, P. & Turcotte, D. 1987 Buoyancy-driven crack propagation: a mechanism for magma migration. J. Fluid Mech. 174, 135153.CrossRefGoogle Scholar
Spence, D. & Turcotte, D. 1985 Magma-driven propagation of cracks. J. Geophys. Res. 90, 575580.CrossRefGoogle Scholar
Spence, D. A. & Sharp, P. W. 1985 Self-similar solution for elastohydrodynamic cavity flow. Proc. R. Soc. Lond. A 400, 289313.Google Scholar