Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-16T17:21:04.017Z Has data issue: false hasContentIssue false

Multiple bubbles and fingers in a Hele-Shaw channel: complete set of steady solutions

Published online by Cambridge University Press:  07 September 2015

Giovani L. Vasconcelos*
Affiliation:
Department of Mathematics, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife, Brazil
*
Email address for correspondence: [email protected]

Abstract

Analytical solutions for both a finite assembly and a periodic array of bubbles steadily moving in a Hele-Shaw channel are presented. The particular case of multiple fingers penetrating into the channel and moving jointly with an assembly of bubbles is also analysed. The solutions are given by a conformal mapping from a multiply connected circular domain in an auxiliary complex plane to the fluid region exterior to the bubbles. In all cases the desired mapping is written explicitly in terms of certain special transcendental functions, known as the secondary Schottky–Klein prime functions. Taken together, the solutions reported here represent the complete set of solutions for steady bubbles and fingers in a horizontal Hele-Shaw channel when surface tension is neglected. All previous solutions under these assumptions are particular cases of the general solutions reported here. Other possible applications of the formalism described here are also discussed.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, H. F. 1897 Abelian Functions: Abel’s Theorem and the Allied Theory of Theta Functions. Cambridge University Press.CrossRefGoogle Scholar
Bensimon, D. & Pelcé, P. 1986 Tip-splitting solutions to a Stefan problem. Phys. Rev. A 33, 44774478.Google Scholar
Bensimon, D., Kadanoff, L. P., Liang, S., Shraiman, B. I. & Tang, C. 1986 Viscous flow in two dimensions. Rev. Mod. Phys. 58, 977999.Google Scholar
Brener, E., Levine, H. & Tu, Y. H. 1991 Nonsymmetric Saffman–Taylor fingers. Phys. Fluids A 3, 529534.CrossRefGoogle Scholar
Burgess, D. & Tanveer, S. 1991 Infinite stream of Hele-Shaw bubbles. Phys. Fluids A 3, 367379.CrossRefGoogle Scholar
Combescot, R., Dombre, T., Hakim, V., Pomeau, Y. & Pumir, A. 1986 Shape selection of Saffman–Taylor fingers. Phys. Rev. Lett. 56, 20362039.Google Scholar
Crowdy, D. G. 2002 A theory of exact solutions for the evolution of a fluid annulus in a rotating Hele-Shaw cell. Q. Appl. Math. 60, 1136.Google Scholar
Crowdy, D. G. 2009a Multiple steady bubbles in a Hele-Shaw cell. Proc. R. Soc. Lond. A 465, 421435.Google Scholar
Crowdy, D. G. 2009b An assembly of steadily translating bubbles in a Hele-Shaw channel. Nonlinearity 22, 5165.CrossRefGoogle Scholar
Crowdy, D. G. & Green, C. C. 2011 Analytical solutions for von Kármán streets of hollow vortices. Phys. Fluids 23, 126602.CrossRefGoogle Scholar
Crowdy, D. G., Llewellyn Smith, S. G. & Freilich, D. V. 2013 Translating hollow vortex pairs. Eur. J. Mech. (B/Fluids) 37, 180186.Google Scholar
Crowdy, D. G. & Marshall, J. S. 2004 Constructing multiply connected quadrature domains. SIAM J. Appl. Maths 64, 13341359.Google Scholar
Crowdy, D. G. & Marshall, J. S. 2007 Computing the Schottky–Klein prime function on the Schottky double of planar domains. Comput. Meth. Funct. Theor. 7, 293308.Google Scholar
Crowdy, D. & Tanveer, S. 2004 The effect of finiteness in the Saffman–Taylor viscous fingering problem. J. Stat. Phys. 114, 15011536.Google Scholar
Dallaston, M. C. & McCue, S. W. 2012 New exact solutions for Hele-Shaw flow in doubly connected regions. Phys. Fluids 24, 052101.Google Scholar
Dawson, S. P. & Mineev-Weinstein, M. 1994 Class of nonsingular exact solutions for Laplacian pattern formation. Phys. Rev. E 50, R24R27.Google Scholar
DeLillo, T. K. & Kropf, H. K. 2010 Slit maps and Schwarz–Christoffel maps for multiply connected domains. Elec. Trans. Numer. Anal. 36, 195223.Google Scholar
Durán, M. A. & Vasconcelos, G. L. 2011 Fingering in a channel and tripolar Loewner evolutions. Phys. Rev. E 84, 051602.Google Scholar
Entov, V. M., Etingof, P. I. & Kleinbock, D. Y. 1995 On nonlinear interface dynamics in Hele-Shaw flows. Eur. J. Appl. Maths 6, 399420.Google Scholar
Fay, J. D. 2008 Theta Functions on Riemann Surfaces. Springer.Google Scholar
Goluzin, G. M. 1969 Geometric Theory of Functions of a Complex Variable. American Mathematical Society.Google Scholar
Green, C. C. & Vasconcelos, G. L. 2014 Multiple steadily translating bubbles in a Hele-Shaw channel. Proc. R. Soc. Lond. A 470, 20130698.Google Scholar
Gubiec, T. & Szymczak, P. 2008 Fingered growth in channel geometry: A Loewner-equation approach. Phys. Rev. E 77, 041602.Google Scholar
Gustafsson, B., Teodorescu, R. & Vasil’ev, A. 2014 Classical and Stochastic Laplacian Growth. Birkhäuser.CrossRefGoogle Scholar
Hohlov, Yu. E., Howison, S. D., Huntingford, C., Ockendon, J. R. & Lacey, A. A. 1994 A model for non-smooth free boundaries in Hele-Shaw flows. Q. J. Mech. Appl. Math. 47, 107128.CrossRefGoogle Scholar
Hong, D. C. & Langer, J. S. 1986 Analytic theory of the selection mechanism in the Saffman–Taylor problem. Phys. Rev. Lett. 56, 20322035.Google Scholar
Howison, S. D. 1986 Fingering in Hele-Shaw cells. J. Fluid Mech. 167, 439453.Google Scholar
Howison, S. D. 1992 Complex variable methods in Hele–Shaw moving boundary problems. Eur. J. Appl. Maths 3, 209224.Google Scholar
Ikeda, E. & Maxworthy, T. 1990 Experimental study of the effect of a small bubble at the nose of a larger bubble in a Hele-Shaw cell. Phys. Rev. A 41, 43674370.Google Scholar
Khalid, A. H., McDonald, N. R. & Vanden-Broeck, J. M. 2015 On the motion of unsteady translating bubbles in an unbounded Hele-Shaw cell. Phys. Fluids 27, 012102.Google Scholar
Luque, A., Brau, F. & Ebert, U. 2008 Saffman–Taylor streamers: mutual finger interaction in spark formation. Phys. Rev. E 78, 016206.CrossRefGoogle ScholarPubMed
Marshall, J. S.2005. Function theory in multiply connected domains and applications to fluid dynamics. PhD thesis, Imperial College London.Google Scholar
Marshall, J. S. 2015a Exact solutions for Hele-Shaw moving free boundary flows around a flat plate of finite length. Q. J. Mech. Appl. Maths (in press).Google Scholar
Marshall, J. S. 2015b Analytical solutions for Hele-Shaw moving free boundary flows in the presence of a circular cylinder. Q. J. Mech. Appl. Maths (in press).Google Scholar
Maxworthy, T. 1986 Bubble formation, motion and interaction in a Hele-Shaw cell. J. Fluid Mech. 173, 95114.CrossRefGoogle Scholar
McDonald, N. R. 2011 Generalised Hele-Shaw flow: A Schwarz function approach. Eur. J. Appl. Maths 22, 517532.CrossRefGoogle Scholar
Meulenbroek, B., Rocco, A. & Ebert, U. 2004 Streamer branching rationalized by conformal mapping techniques. Phys. Rev. E 69, 067402.CrossRefGoogle ScholarPubMed
Millar, R. F. 1992 Bubble motion along a channel in a Hele-Shaw cell: A Schwarz function approach. Complex Variables 18, 1325.Google Scholar
Mineev-Weinstein, M. B. 1998 Selection of the Saffman–Taylor finger width in the absence of surface tension: an exact result. Phys. Rev. Lett. 80, 21132116.Google Scholar
Mineev-Weinstein, M., Wiegmann, P. B. & Zabrodin, A. 2000 Integrable structure of interface dynamics. Phys. Rev. Lett. 84, 51065109.CrossRefGoogle ScholarPubMed
Pelcé, P. 1988 Dynamics of Curved Fronts. Academic.Google Scholar
Richardson, S. 1994 Hele-Shaw flows with time-dependent free boundaries in which the fluid occupies a multiply-connected region. Eur. J. Appl. Maths 5, 97122.CrossRefGoogle Scholar
Richardson, S. 1996a Hele-Shaw flows with time-dependent free boundaries involving a concentric annulus. Phil. Trans. R. Soc. Lond. A 354, 25132553.Google Scholar
Richardson, S. 1996b Hele-Shaw flows with free boundaries driven along infinite strips by a pressure difference. Eur. J. Appl. Maths 7, 345366.CrossRefGoogle Scholar
Richardson, S. 2001 Hele-Shaw flows with time-dependent free boundaries involving a multiply-connected fluid region. Eur. J. Appl. Maths 12, 571599.Google Scholar
Saffman, P. G. 1959 Exact solutions for the growth of fingers from a flat interface between two fluids in a porous medium or Hele-Shaw cell. Q. J. Mech. Appl. Maths 12, 146150.CrossRefGoogle Scholar
Saffman, P. G. & Taylor, G. I. 1958 The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. Lond. A 245, 312320.Google Scholar
Silva, A. M. P. & Vasconcelos, G. L. 2011 Doubly periodic array of bubbles in a Hele-Shaw cell. Proc. R. Soc. Lond. A 467, 346360.Google Scholar
Silva, A. M. P. & Vasconcelos, G. L. 2013 Stream of asymmetric bubbles in a Hele-Shaw channel. Phys. Rev. E 87, 055001.Google Scholar
Shraiman, B. I. 1986 Velocity selection and the Saffman–Taylor problem. Phys. Rev. Lett. 56, 20282031.Google Scholar
Shraiman, B. & Bensimon, D. 1984 Singularities in nonlocal interface dynamics. Phys. Rev. A 30, 28402842.CrossRefGoogle Scholar
Tanveer, S. 1987 New solutions for steady bubbles in a Hele-Shaw cell. Phys. Fluids 30, 651658.Google Scholar
Taylor, G. I. & Saffman, P. G. 1959 A note on the motion of bubbles in a Hele-Shaw cell and porous medium. Q. J. Mech. Appl. Maths 12, 265279.Google Scholar
Vasconcelos, G. L. 1994 Multiple bubbles in a Hele-Shaw cell. Phys. Rev. E 50, R3306R3309.Google Scholar
Vasconcelos, G. L. 1998 Exact solutions for $N$ steady fingers in a Hele-Shaw cell. Phys. Rev. E 58, 68586860.Google Scholar
Vasconcelos, G. L. 1999 Motion of a finger with bubbles in a Hele-Shaw cell. Phys. Fluids 11, 12811283.Google Scholar
Vasconcelos, G. L. 2000 Analytic solution for two bubbles in a Hele-Shaw cell. Phys. Rev. E 62, R3047R3050.Google Scholar
Vasconcelos, G. L. 2001 Exact solutions for steady bubbles in a Hele-Shaw cell with rectangular geometry. J. Fluid Mech. 444, 175198.Google Scholar
Vasconcelos, G. L., Marshall, J. S. & Crowdy, D. G. 2014 Secondary Schottky–Klein prime functions associated with planar multiply connected domains. Proc. R. Soc. Lond. A 471, 20140688.Google Scholar
Vasconcelos, G. L. & Mineev-Weinstein, M. 2014 Selection of the Taylor–Saffman bubble does not require surface tension. Phys. Rev. E 89, 061003(R).Google Scholar
Zabrodin, A. 2009 Growth of fat slits and dispersionless KP hierarchy. J. Phys. A: Math. Theor. 42, 085206.Google Scholar