Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-17T13:17:57.729Z Has data issue: false hasContentIssue false

Multi-particle dispersion during entrainment in turbulent free-shear flows

Published online by Cambridge University Press:  16 September 2016

Tomoaki Watanabe*
Affiliation:
Department of Aerospace Engineering, Nagoya University, Nagoya 464-8603, Japan
Carlos B. da Silva
Affiliation:
IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa 1049-001, Portugal
Koji Nagata
Affiliation:
Department of Aerospace Engineering, Nagoya University, Nagoya 464-8603, Japan
*
Email address for correspondence: [email protected]

Abstract

Multi-particle dispersion is studied using direct numerical simulations of temporally evolving mixing layers and planar jets for tetrahedra consisting of four fluid particles which are seeded in the turbulent regions or in the non-turbulent regions near the turbulent/non-turbulent interface (TNTI). The modified Richardson law for decaying turbulence is observed for particle pairs. The size dependence of the mean and relative motions of the entrained tetrahedra indicates that the characteristic length scale of the entrained lumps of fluid is approximately 10 times the Kolmogorov microscale. When the tetrahedra move within the TNTI layer they are flattened and elongated by vortex stretching at a deformation rate that is characterized by the Kolmogorov time scale. The shape evolutions of the tetrahedra show that in free-shear flows, thin-slab structures of advected scalars are generated within the TNTI layers.

Type
Rapids
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bourgoin, M., Ouellette, N. T., Xu, H., Berg, J. & Bodenschatz, E. 2006 The role of pair dispersion in turbulent flow. Science 311 (5762), 835838.Google Scholar
Brethouwer, G., Hunt, J. C. R. & Nieuwstadt, F. T. M. 2003 Micro-structure and Lagrangian statistics of the scalar field with a mean gradient in isotropic turbulence. J. Fluid Mech. 474, 193225.Google Scholar
Corrsin, S. & Kistler, A. L.1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. No. TN-1244.Google Scholar
Holzner, M., Liberzon, A., Nikitin, N., Lüthi, B., Kinzelbach, W. & Tsinober, A. 2008 A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation. J. Fluid Mech. 598, 465475.Google Scholar
Ishihara, T. & Kaneda, Y. 2002 Relative diffusion of a pair of fluid particles in the inertial subrange of turbulence. Phys. Fluids 14 (11), L69L72.Google Scholar
Ishihara, T., Kaneda, Y. & Hunt, J. C. R. 2013 Thin shear layers in high Reynolds number turbulence – DNS results. Flow Turbul. Combust. 91 (4), 895929.Google Scholar
Larcheveque, M. & Lesieur, M. 1981 The application of eddy-damped Markovian closures to the problem of dispersion of particle pairs. J. Méc. 20 (1), 113134.Google Scholar
Mahrt, L. 1999 Stratified atmospheric boundary layers. Boundary-Layer Meteorol. 90 (3), 375396.Google Scholar
Mazzitelli, I. M., Toschi, F. & Lanotte, A. S. 2014 An accurate and efficient Lagrangian sub-grid model. Phys. Fluids 26 (9), 095101.Google Scholar
Ott, S. & Mann, J. 2000 An experimental investigation of the relative diffusion of particle pairs in three-dimensional turbulent flow. J. Fluid Mech. 422, 207223.Google Scholar
Pumir, A., Shraiman, B. I. & Chertkov, M. 2001 The Lagrangian view of energy transfer in turbulent flow. Europhys. Lett. 56 (3), 379385.Google Scholar
Robert, P., Roux, A., Harvey, C. C., Dunlop, M. W., Daly, P. W. & Glassmeier, K. H. 1998 Tetrahedron geometric factors. Anal. Meth. Multi-Spacecraft Data 323348.Google Scholar
Schumacher, J. 2009 Lagrangian studies in convective turbulence. Phys. Rev. E 79 (5), 056301.Google Scholar
da Silva, C. B., Dos Reis, R. J. N. & Pereira, J. C. F. 2011 The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165190.Google Scholar
da Silva, C. B., Hunt, J. C. R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.Google Scholar
da Silva, C. B. & Pereira, J. C. F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.Google Scholar
Taveira, R. R., Diogo, J. S., Lopes, D. C. & da Silva, C. B. 2013 Lagrangian statistics across the turbulent–nonturbulent interface in a turbulent plane jet. Phys. Rev. E 88 (4), 043001.Google Scholar
Taveira, R. R. & da Silva, C. B. 2013 Kinetic energy budgets near the turbulent/nonturbulent interface in jets. Phys. Fluids 25, 015114.Google Scholar
Taveira, R. R. & da Silva, C. B. 2014 Characteristics of the viscous superlayer in shear free turbulence and in planar turbulent jets. Phys. Fluids 26 (2), 021702.Google Scholar
Thorpe, S. A. 1978 The near-surface ocean mixing layer in stable heating conditions. J. Geophys. Res. 83 (C6), 28752885.Google Scholar
Watanabe, T. & Nagata, K. 2016 Mixing model with multi-particle interactions for Lagrangian simulations of turbulent mixing. Phys. Fluids 28 (8), 085103.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2015 Turbulent mixing of passive scalar near turbulent and non-turbulent interface in mixing layers. Phys. Fluids 27 (8), 085109.Google Scholar
Watanabe, T., da Silva, C. B., Sakai, Y., Nagata, K. & Hayase, T. 2016 Lagrangian properties of the entrainment across turbulent/non-turbulent interface layers. Phys. Fluids 28 (3), 031701.Google Scholar
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.Google Scholar
Xu, H., Ouellette, N. T. & Bodenschatz, E. 2008 Evolution of geometric structures in intense turbulence. New J. Phys. 10 (1), 013012.Google Scholar