Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T18:05:34.835Z Has data issue: false hasContentIssue false

The Mott-Smith solution to the regular shock reflection problem

Published online by Cambridge University Press:  18 October 2022

M.Yu. Timokhin*
Affiliation:
Lomonosov Moscow State University, 119991 Moscow, Russia Khristianovich Institute of Theoretical and Applied Mechanics, 630090 Novosibirsk, Russia Moscow Aviation Institute, 125993 Moscow, Russia
A.N. Kudryavtsev
Affiliation:
Khristianovich Institute of Theoretical and Applied Mechanics, 630090 Novosibirsk, Russia
Ye.A. Bondar
Affiliation:
Khristianovich Institute of Theoretical and Applied Mechanics, 630090 Novosibirsk, Russia
*
Email address for correspondence: [email protected]

Abstract

The classical Mott-Smith solution for one-dimensional normal shock wave structure is extended to the two-dimensional regular shock reflection problem. The solution for the non-equilibrium molecular velocity distribution function along the symmetry-plane streamline is obtained as a weighted sum of four Maxwellians. An analysis of applicability of the solution has been performed using the results of direct simulation Monte Carlo calculations for a range of incident shock wave intensities. Accuracy of the solution improves with increasing $Ma_n$, the Mach number normal to the shock front, so that the solution becomes rather accurate for strong shocks with $Ma_n>8$.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alsmeyer, H. 1976 Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam. J. Fluid Mech. 74, 497513.CrossRefGoogle Scholar
Ben-Dor, G. 2007 Shock Wave Reflection Phenomena. Springer.Google Scholar
Bird, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press.Google Scholar
Bird, G.A. 1967 The velocity distribution function within a shock wave. J. Fluid Mech. 30 (3), 479487.CrossRefGoogle Scholar
Bondar, Y., Shoev, G., Kokhanchik, A. & Timokhin, M. 2019 Nonequilibrium velocity distribution in steady regular shock-wave reflection. AIP Conf. Proc. 2132 (1), 120005.CrossRefGoogle Scholar
Erofeev, A.I. & Friedlander, O.G. 2002 Momentum and energy transfer in a shock wave. Fluid Dyn. 379 (4), 614623.CrossRefGoogle Scholar
Grad, H. 1949 On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2 (4), 331407.CrossRefGoogle Scholar
Hansen, K. & Hornig, D.F. 1960 Thickness of shock fronts in argon. J. Chem. Phys. 33 (3), 913916.CrossRefGoogle Scholar
Holway, L.H. 1965 a Kinetic theory of shock structure using an ellipsoidal distribution function. In Proceedings of the 4th International Symposium on Rarefied Gas Dynamics (ed. J.H. Leeuw), vol. 1, pp. 193–215. Academic Press.Google Scholar
Holway, L.H. 1965 b Temperature overshoots in shock waves. Phys. Fluids 8 (10), 19051906.CrossRefGoogle Scholar
Hornung, H 1986 Regular and mach reflection of shock waves. Annu. Rev. Fluid Mech. 18 (1), 3358.CrossRefGoogle Scholar
Ivanov, I.E., Kryukov, I.A., Timokhin, M.Y., Bondar, Y.A., Kokhanchik, A.A. & Ivanov, M.S. 2012 Study of the shock wave structure by regularized Grad's set of equations. AIP Conf. Proc. 1501 (1), 215222.CrossRefGoogle Scholar
Ivanov, M., Bondar, Y., Khotyanovsky, D., Kudryavtsev, A. & Shoev, G. 2010 Viscosity effects on weak irregular reflection of shock waves in steady flow. Prog. Aerosp. Sci. 46 (2), 89105.CrossRefGoogle Scholar
Ivanov, M., Kashkovsky, A., Gimelshein, S., Markelov, G., Alexeenko, A., Bondar, Y., Zhukova, G., Nikiforov, S. & Vaschenkov, P. 2006 SMILE system for 2D/3D DSMC computations. In Proceedings of 25th International Symposium on Rarefied Gas Dynamics, pp. 21–28.Google Scholar
Ivanov, M.S., Ben-Dor, G., Elperin, T., Kudryavtsev, A.N. & Khotyanovsky, D.V. 2002 The reflection of asymmetric shock waves in steady flows: a numerical investigation. J. Fluid Mech. 469, 7187.CrossRefGoogle Scholar
Jadhav, R.S., Gavasane, A. & Agrawal, A. 2021 Improved theory for shock waves using the OBurnett equations. J. Fluid Mech. 929, A37.CrossRefGoogle Scholar
Johnson, B.M. 2013 Analytical shock solutions at large and small Prandtl number. J. Fluid Mech. 726, R4.CrossRefGoogle Scholar
Khotyanovsky, D., Bondar, Y., Kudryavtsev, A., Shoev, G. & Ivanov, M.S. 2009 Viscous effects in steady reflection of strong shock waves. AIAA J. 47 (5), 12631269.CrossRefGoogle Scholar
Kogan, M.N. 1969 Rarefied Gas Dynamics. Plenum.CrossRefGoogle Scholar
Kudryavtsev, A.N., Shershnev, A.A. & Ivanov, M.S. 2008 Comparison of different kinetic and continuum models applied to the shock-wave structure problem. AIP Conf. Proc. 1084 (1), 507512.CrossRefGoogle Scholar
Mott-Smith, H.M. 1951 The solution of the Boltzmann equation for a shock wave. Phys. Rev. 82, 885892.CrossRefGoogle Scholar
Muckenfuss, C. 1962 Some aspects of shock structure according to the bimodal model. Phys. Fluids 5 (11), 13251336.CrossRefGoogle Scholar
Ohwada, T. 1993 Structure of normal shock waves: direct numerical analysis of the Boltzmann equation for hard-sphere molecules. Phys. Fluids A 5 (1), 217234.CrossRefGoogle Scholar
Pham-Van-Diep, G., Erwin, D. & Muntz, E.P. 1989 Nonequilibrium molecular motion in a hypersonic shock wave. Science 245 (4918), 624626.CrossRefGoogle Scholar
Pham-Van-Diep, G.C., Erwin, D.A. & Muntz, E.P. 1991 Testing continuum descriptions of low-mach-number shock structures. J. Fluid Mech. 232, 403413.CrossRefGoogle Scholar
Salwen, H., Grosch, C.E. & Ziering, S. 1964 Extension of the Mott-Smith method for a one-dimensional shock wave. Phys. Fluids 7 (2), 180189.CrossRefGoogle Scholar
Schmidt, B. 1969 Electron beam density measurements in shock waves in argon. J. Fluid Mech. 39 (2), 361373.CrossRefGoogle Scholar
Shevyrin, A.A., Bondar, Y.A. & Ivanov, M.S. 2005 Analysis of repeated collisions in the DSMC method. In Proceedings of 24th International Symposium on Rarefied Gas Dynamics (ed. M. Capitelli), pp. 565–570. American Institute of Physics.CrossRefGoogle Scholar
Shoev, G. & Ogawa, H. 2019 Numerical study of viscous effects on centreline shock reflection in axisymmetric flow. Phys. Fluids 31 (2), 026105.CrossRefGoogle Scholar
Shoev, G.V., Timokhin, M.Y. & Bondar, Y.A. 2020 On the total enthalpy behavior inside a shock wave. Phys. Fluids 32 (4), 041703.CrossRefGoogle Scholar
Solovchuk, M.A. & Sheu, T.W.H. 2010 Prediction of shock structure using the bimodal distribution function. Phys. Rev. E 81, 056314.CrossRefGoogle ScholarPubMed
Solovchuk, M.A. & Sheu, T.W.H. 2011 Prediction of strong-shock structure using the bimodal distribution function. Phys. Rev. E 83, 026301.CrossRefGoogle ScholarPubMed
Sternberg, J. 1959 Triple-shock-wave intersections. Phys. Fluids 2 (2), 179206.CrossRefGoogle Scholar
Tamm, I.E. 1965 On the width of high-intensity shock waves [in Russian]. Tr. Fiz. Inst. P. N. Lebedev Akad. Nauk SSSR 99 (2), 231241.Google Scholar
Timokhin, M. & Rukhmakov, D. 2021 Local non-equilibrium phase density reconstruction with Grad and Chapman-Enskog methods. J. Phys.: Conf. Ser. 1959 (1), 012049.Google Scholar
Timokhin, M.Y., Bondar, Y.A., Kokhanchik, A.A., Ivanov, M.S., Ivanov, I.E. & Kryukov, I.A. 2015 Study of the shock wave structure by regularized Grad's set of equations. Phys. Fluids 27, 037101.CrossRefGoogle Scholar
Timokhin, M.Y., Struchtrup, H., Kokhanchik, A.A. & Bondar, Y.A. 2016 The analysis of different variants of R13 equations applied to the shock-wave structure. AIP Conf. Proc. 1786, 140006.CrossRefGoogle Scholar
Timokhin, M.Y., Tikhonov, M., Mursenkova, I.V. & Znamenskaya, I.A. 2020 Shock-wave thickness influence to the light diffraction on a plane shock wave. Phys. Fluids 32 (11), 116103.CrossRefGoogle Scholar
Torrilhon, M. & Struchtrup, H. 2004 Regularized 13-moment equations: shock structure calculations and comparison to Burnett models. J. Fluid Mech. 513, 171198.CrossRefGoogle Scholar
Velasco, R.M. & Uribe, F.J. 2019 Shock-wave structure according to a linear irreversible thermodynamic model. Phys. Rev. E 99, 023114.CrossRefGoogle ScholarPubMed
Xu, K. & Huang, J.-C. 2010 A unified gas-kinetic scheme for continuum and rarefied flows. J. Comput. Phys. 229 (20), 77477764.CrossRefGoogle Scholar
Xue, L., Schrijer, F.F.J., van Oudheusden, B.W., Wang, C., Shi, Z. & Cheng, K. 2020 Theoretical study on regular reflection of shock wave–boundary layer interactions. J. Fluid Mech. 899, A30.CrossRefGoogle Scholar
Yen, S.M. 1966 Temperature overshoot in shock waves. Phys. Fluids 9, 14171418.CrossRefGoogle Scholar