Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T14:11:28.024Z Has data issue: false hasContentIssue false

Motion of spheroid particles in shear flow with inertia

Published online by Cambridge University Press:  14 May 2014

Wenbin Mao
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
Alexander Alexeev*
Affiliation:
George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
*
Email address for correspondence: [email protected]

Abstract

In this article, we investigate the motion of a solid spheroid particle in a simple shear flow. Using a lattice Boltzmann method, we examine individual effects of fluid inertia and particle rotary inertia as well as their combination on the dynamics and trajectory of spheroid particles at low and moderate Reynolds numbers. The motion of a single spheroid is shown to be dependent on the particle Reynolds number, particle aspect ratio, particle initial orientation and the Stokes number. Spheroids with random initial orientations are found to drift to stable orbits influenced by fluid inertia and/or particle inertia. Specifically, prolate spheroids drift towards the tumbling mode of motion, whereas oblate spheroids drift to the rolling mode. The rotation period and the variation of angular velocity of tumbling spheroids decrease as Stokes number increases. With increasing Reynolds number, both the maximum and minimum values of angular velocity decrease, whereas the particle rotation period increases. We show that particle inertia does not affect the hydrodynamic torque on the particle. We also demonstrate that superposition can be used to estimate the combined effect of fluid inertia and particle inertia on the dynamics of spheroid particles at sufficiently low Reynolds numbers.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aidun, C. K. & Clausen, J. R. 2010 Lattice–Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439472.Google Scholar
Aidun, C. K., Lu, Y. & Ding, E. J. 1998 Direct analysis of particulate suspensions with inertia using the discrete Boltzmann equation. J. Fluid Mech. 373, 287311.Google Scholar
Alexeev, A., Verberg, R. & Balazs, A. C. 2005 Modeling the motion of microcapsules on compliant polymeric surfaces. Macromolecules 38, 1024410260.Google Scholar
Alexeev, A., Verberg, R. & Balazs, A. C. 2007 Patterned surfaces segregate compliant microcapsules. Langmuir 23, 983987.Google Scholar
Altenbach, H., Naumenko, K., Pylypenko, S. & Renner, B. 2007 Influence of rotary inertia on the fiber dynamics in homogeneous creeping flows. Z. Angew. Math. Mech. 87, 8193.Google Scholar
Bouzidi, Mh., Firdaouss, M. & Lallemand, P. 2001 Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13, 34523459.Google Scholar
Bretherton, F. P. 1962 The motion of rigid particles in a shear flow at low Reynolds number. J. Fluid Mech. 14, 284304.Google Scholar
Broday, D., Fichman, M., Shapiro, M. & Gutfinger, C. 1998 Motion of spheroidal particles in vertical shear flows. Phys. Fluids 10, 86100.Google Scholar
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30, 329364.CrossRefGoogle Scholar
Chun, B. & Ladd, A. J. C. 2007 Interpolated boundary condition for lattice Boltzmann simulations of flows in narrow gaps. Phys. Rev. E 75, 066705.Google Scholar
Clausen, J. R. & Aidun, C. K. 2009 Galilean invariance in the lattice-Boltzmann method and its effect on the calculation of rheological properties in suspensions. Intl J. Multiphase Flow 35, 307311.Google Scholar
Ding, E. J. & Aidun, C. K. 2000 The dynamics and scaling law for particles suspended in shear flow with inertia. J. Fluid Mech. 423, 317344.Google Scholar
Ding, E. J. & Aidun, C. K. 2003 Extension of the lattice-Boltzmann method for direct simulation of suspended particles near contact. J. Stat. Phys. 112, 685708.Google Scholar
Feng, J. & Joseph, D. D. 1995 The unsteady motion of solid bodies in creeping flows. J. Fluid Mech. 303, 83102.Google Scholar
Huang, H., Yang, X., Krafczyk, M. & Lu, X.-Y. 2012 Rotation of spheroidal particles in Couette flows. J. Fluid Mech. 692, 369394.CrossRefGoogle Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102, 161179.Google Scholar
Kilimnik, A., Mao, W. & Alexeev, A. 2011 Inertial migration of deformable capsules in channel flow. Phys. Fluids 23, 123302123306.Google Scholar
Ku, X. K. & Lin, J. Z. 2009 Inertial effects on the rotational motion of a fibre in simple shear flow between two bounding walls. Phys. Scr. 80, 025801.Google Scholar
Ladd, A. J. C. 1994 Numerical simulations of particulate suspensions via a discretized Boltzmann equation. Part 2. Numerical results. J. Fluid Mech. 271, 311339.Google Scholar
Ladd, A. J. C. & Verberg, R. 2001 Lattice-Boltzmann simulations of particle–fluid suspensions. J. Stat. Phys. 104, 11911251.Google Scholar
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12, 435476.Google Scholar
Lundell, F. & Carlsson, A. 2010 Heavy ellipsoids in creeping shear flow: transitions of the particle rotation rate and orbit shape. Phys. Rev. E 81, 016323.Google Scholar
Mao, W. & Alexeev, A. 2011 Hydrodynamic sorting of microparticles by size in ridged microchannels. Phys. Fluids 23, 051704.Google Scholar
Masaeli, M., Sollier, E., Amini, H., Mao, W., Camacho, K., Doshi, N., Mitragotri, S., Alexeev, A. & Di Carlo, D. 2012 Continuous inertial focusing and separation of particles by shape. Phys. Rev. X 2, 031017.Google Scholar
Mason, S. G. & Manley, R. S. J. 1956 Particle motions in sheared suspensions: orientations and interactions of rigid rods. Proc. R. Soc. Lond. A Math. Phys. Sci. 238, 117131.Google Scholar
Masoud, H., Stone, H. A. & Shelley, M. J. 2013 On the rotation of porous ellipsoids in simple shear flows. J. Fluid Mech. 733, R6.Google Scholar
Mikulencak, D. R. & Morris, J. F. 2004 Stationary shear flow around fixed and free bodies at finite Reynolds number. J. Fluid Mech. 520, 215242.Google Scholar
Mills, Z. G., Mao, W. & Alexeev, A. 2013 Mesoscale modeling: solving complex flows in biology and biotechnology. Trends Biotechnol. 31, 426434.Google Scholar
Nilsen, C. & Andersson, H. I. 2013 Chaotic rotation of inertial spheroids in oscillating shear flow. Phys. Fluids 25, 013303.Google Scholar
Qi, D. & Luo, L.-S. 2003 Rotational and orientational behaviour of three-dimensional spheroidal particles in Couette flows. J. Fluid Mech. 477, 201213.Google Scholar
Subramanian, G. & Koch, D. L. 2005 Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535, 383414.Google Scholar
Subramanian, G. & Koch, D. 2006a Centrifugal forces alter streamline topology and greatly enhance the rate of heat and mass transfer from neutrally buoyant particles to a shear flow. Phys. Rev. Lett. 96, 134503.Google Scholar
Subramanian, G. & Koch, D. L. 2006b Inertial effects on the orientation of nearly spherical particles in simple shear flow. J. Fluid Mech. 557, 257296.Google Scholar
Subramanian, G. & Koch, D. L. 1994 Inertial effects on the transfer of heat or mass from neutrally buoyant spheres in a steady linear velocity field. Phys. Fluids 18, 073302.Google Scholar
Taylor, G. I. 1923 The motion of ellipsoidal particles in a viscous fluid. Proc. R. Soc. Lond. A 103, 5861.Google Scholar
Trevelyan, B. J. & Mason, S. G. 1951 Particle motions in sheared suspensions. I. Rotations. J. Colloid Sci. 6, 354367.Google Scholar
Tuckerman, M., Berne, B. J. & Martyna, G. J. 1992 Reversible multiple time scale molecular-dynamics. J. Chem. Phys. 97, 19902001.Google Scholar
Wagner, A. J. & Pagonabarraga, I. 2002 Lees–Edwards boundary conditions for lattice Boltzmann. J. Stat. Phys. 107, 521537.Google Scholar
Yu, Z., Phan-Thien, N. & Tanner, R. I. 2007 Rotation of a spheroid in a Couette flow at moderate Reynolds numbers. Phys. Rev. E 76, 026310.Google Scholar
Zettner, C. M. & Yoda, M. 2001 The circular cylinder in simple shear at moderate Reynolds numbers: an experimental study. Exp. Fluids 30, 346353.Google Scholar