Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-07T19:59:19.874Z Has data issue: false hasContentIssue false

The motion of an elliptical cylinder in channel flow at low Reynolds numbers

Published online by Cambridge University Press:  26 April 2006

Abstract

The motion of an elliptical cylindrical particle immersed in an incompressible Newtonian fluid in a narrow channel is examined numerically in the zero-Reynolds-number limit. It is assumed that no external forces or torques act on the elliptical cylinder, and the effects of inertia forces on the motion of the fluid and the particle are neglected. The Stokes equations are solved by a finite-element method for various positions and orientations of the cylinder, yielding the instantaneous velocities of the particle that satisfy the conditions of zero force and zero torque on the particle. Using the computed longitudinal, lateral, and angular velocities of the particle, the evolution of the particle's position and orientation is determined for various initial configurations. An elliptical cylinder is found to either tumble or oscillate in rotation, depending on the particle-channel size ratio, the axis ratio of the elliptical cylinder, and the initial conditions. In the first case, the particle rotates continuously in one direction that is well approximated by Jeffery's solution for an elliptical cylinder in unbounded shear flow with a so-called equivalent axis ratio; in the second case, the particle changes its direction of rotation during part of each period. In both cases, the particle translates with a periodically varying longitudinal velocity, accompanied by a considerable side drift due to the walls. The oscillatory motion is more likely to occur when the particle-channel size ratio or axis ratio is increased. The tumbling motion is inhibited for elliptic cylinders whose size ratios are larger than threshold values that depend on the axis ratio.

Type
Research Article
Copyright
© 1993 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arp, P. A. & Mason, S. G. 1977 J. Colloid Interface Sci. 61, 21.
Bretherton, F. P. 1962 J. Fluid Mech. 14, 284.
Chen, T. C. & Skalak, R. 1970 Appl. Sci. Res. 22, 403.
Chwang, A. T. 1975 J. Fluid Mech. 72, 17.
Cox, R. G., Zia, I. Y. Z. & Mason, S. G. 1968 J. Colloid Interface Sci. 17, 7.
Dabroś, T. 1985 J. Fluid Mech. 156, 1.
Darabaner, C. L., Raasch, J. K. & Mason, S. G. 1967 Can. J. Chem. Engng 45, 3.
Dvinsky, A. S. 1983 PhD thesis, Cullen College of Engineering, University of Houston, USA.
Dvinsky, A. S. & Popel, A. S. 1987 Comput. Fluids 15, 405.
Edwardes, D. 1892 Q. J. Maths 26, 70.
Faxen, H. 1946 Proc. R. Swed. Inst. Engng Res. 187, 1.
Ganatos, P., Weinbaum, W. & Pfeffer, R. 1982 J. Fluid Mech. 124, 27.
Hsu, R. 1985 Hydrodynamic interaction of an arbitrary particle with a planar-wall at low Reynolds numbers. PhD thesis, City University of New York, USA.
Hsu, R. & Ganatos, P. 1989 J. Fluid Mech. 207, 29.
Hu, H. H., Joseph, D. D. & Fortes, A. F. 1992 Army High Performance Computing Research Center Preprint 92-035.
Jeffery, G. B. 1922 Proc. R. Soc. A 102, 161.
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth–Heinemann.
Oberbeck, A. 1876 Crelles J. 81, 62.
Olson, M. D. & Tuann, S. Y. 1978 Finite Elements in Fluids, vol. 3, p. 73. Wiley.
Raasch, J. K. 1961 PhD thesis. Faculty of Mechanical Engineering, Karlsruhe Technical University, Karlsruhe, Germany.
Secomb, T. W. & Hsu, R. 1993 Submitted to J. Fluid Mech.Google Scholar
Stover, C. A. & Cohen, C. 1990 Rheol. Acta 29, 192.
Sugihara-Seki, M. 1992 Trans. ASME K: J. Biomech. Engng 114, 547.Google Scholar
Sugihara, M. & Niimi, H. 1984 ASME J. Appl. Mech. 51, 879.
Sugihara-Seki, M., Secomb, T. W. & Skalak, R. 1990 Microvasc. Res. 40, 379.
Sugihara-Seki, M. & Skalak, R. 1988 Microvasc. Res. 36, 64.
Sugihara-Seki, M. & Skalak, R. 1989 Biorheology 26, 261.
Takaisi, Y. 1955 J. Phys. Soc. Japan 10, 685.
Takaisi, Y. 1956 J. Phys. Soc. Japan 11, 1092.
Tözeren, H. 1984 Intl J. Numer. Meth. Fluids 4, 159.
Wakiya, S. 1957 J. Phys. Soc. Japan 12, 1130.
Wakiya, S. 1959 Res. Rep Fac. Engng Niigata Univ. Japan 8, 31.
Weinbaum, S., Ganatos, P. & Yan, Z.-Y. 1990 Ann. Rev. Fluid Mech. 22, 275.
Yang, S.-M. & Leal, G. 1984 J. Fluid Mech. 149, 275.