Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T05:35:06.075Z Has data issue: false hasContentIssue false

Monopole emission of sound by asymmetric bubble oscillations. Part 1. Normal modes

Published online by Cambridge University Press:  26 April 2006

Michael S. Longuet-Higgins
Affiliation:
Center for Studies of Nonlinear Dynamics, La Jolla Institute, 7855 Fay Ave., La Jolla, CA 92037, USA Permanent address: Department of Applied Mathematics and Theoretical Physics, Silver Street, Cambridge CB3 9EW, UK

Abstract

On a linearized theory, the pressure field due to bubbles oscillating asymmetrically in a ‘distortion mode’ decays with radial distance r like r−(n+1), where n > 1. Hence these modes have been thought to produce a negligible emission of sound. In this paper it is shown that, on the contrary, in nonlinear theory the distortion modes produce a monopole radiation of sound (n=0) at second order. Its frequency is twice the basic frequency of the distortion mode, and the sound amplitude is proportional to the square of the distortion amplitude. The magnitude of the pressure fluctuations within the bubble is comparable with 1 atmosphere.

Type
Research Article
Copyright
© 1989 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. 1958 Excitation of oscillations in the shape of pulsating gas bubbles; theoretical work. (Abstract). J. Acoust. Soc. Am. 30, 697.Google Scholar
Benjamin, T. B. 1964 Surface effects in non-spherical motions of small cavities In Cavitation in Real Liquids (ed. R. Davies), pp. 164180. Elsevier.
Benjamin, T. B. & Ursell, F. 1954 The stability of a plane surface of a liquid in vertical periodic motion.. Proc. R. Soc. Lond. A 225, 505515.Google Scholar
Brekhovskikh, L. M. 1966 Underwater sound waves generated by surface waves in the ocean. Izv. Atmos. Ocean. Phys. 2, 970980.Google Scholar
Cooper, R. I. B. & Longuet-Higgins, M. S. 1951 An experimental study of the pressure variations in standing water waves.. Proc. R. Soc. Lond. A 206, 424434.Google Scholar
Crowther, P. A. 1987 Bubble noise creation mechanisms. Proc. NATO Adv. Workshop on Natural Mechanisms of Surface Generated Noise in the Ocean, Lerici, Italy, 15-19 June 1987 In Sea Surface Sound (ed. B. R. Kerman), pp. 131150. Reidel, 639 pp.
Eller, A. I. & Crum, L. A. 1970 Instability of the motion of a pulsating bubble in a sound field. J. Acoust. Soc. Am. 47, 762767.Google Scholar
Faraday, M. 1831 On a peculiar class of acoustical figures, and on certain forms assumed by groups of particles on vibrating eleastic surfaces. Phil. Trans. R. Soc. Lond., pp. 299340.
Fitzpatrick, H. M. & Strasberg, M. 1957 Hydrodynamic sources of sound. Proc. 1st Symp. on Naval Hydrodynamics, Washington, D.C., NAS-NRC Publ. 515, pp. 241280. Washington: US Govt. Printing Office.
Haubrich, R. A., Munk, W. H. & Snodgrass, F. E. 1963 comparative spectra of microseisms and swell. Bull. Seis. Soc. Am. 53, 2737.Google Scholar
Hollett, R. & Heitmeyer, R. 1987 Noise generation by bubbles formed in breaking waves. Proc. NATO Adv. Workshop on Natural Mechanisms of Surface Generated Noise in the Ocean, Lerici, Italy, 15-19 June 1987. In Sea Surface Sound (ed. B. R. Kerman), pp. 449462. Reidel, 639 pp.
Kibblewhite, A. C. 1987 Ocean noise spectrum below 10 Hz - Mechanisms and measurements. Proc. NATO Adv. Workshop on Natural Mechanisms of Surface Generated Noise in the Ocean, Lerici, Italy, 15-19 June 1987. In Sea Surface Sound (ed. B. R. Kerman), pp. 337360. Reidel, 639 pp.
Kornfeld, M. & Suvorov, L. 1944 On the destructive action of cavitation. J. Appl. Phys. 15, 495506.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press, 632 pp.
Longuet-Higgins, M. S. 1948 The generation of microseisms by sea waves. Proc. Gen. Assembly IUGG, Oslo, Aug. 1948, pp. 1718. Assoc. Séis. Météorol. Océanog. Phys. Séance Commune.
Longuet-Higgins, M. S. 1950 A theory of the origin of microseisms.. Phil. Trans. R. Soc. Lond. A 243, 135.Google Scholar
Longuet-Higgins, M. S. 1953 Can sea waves cause microseisms? Proc. Symp. on Microseisms, Harriman, N. Y., Sept. 1952. NAS-NRC Pub. 306, pp. 7493.Google Scholar
Longuet-Higgins, M. S. 1983 Bubbles, breaking waves and hyperbolic jets at a free surface. J. Fluid Mech. 127, 103121.Google Scholar
Longuet-Higgins, M. S. 1989 Monopole emission of sound by asymmetric bubble oscillations. Part 2. An initial-value problem. J. Fluid Mech. 201, 543565.Google Scholar
Meyer, E. & Tamm, K. 1939 Eigenschwingungen und Dämpfung von Gasblasen in Flüssigkeiten. Akust. Z. 4, 145152.Google Scholar
Minnaert, M. 1933 On musical air-bubbles and the sounds of running water. Phil. Mag. 16, 235248.Google Scholar
Nottingk, B. E. & Neppiras, E. A. 1950 Cavitation produced by ultrasonics. Proc. Phys. Soc. Lond. B 63, 647685.Google Scholar
Plesset, M. S. & Prosperetti, A. 1977 Bubble dynamics and cavitation. Ann. Rev. Fluid Mech. 9, 145185.Google Scholar
Strasberg, M. 1958 Excitation of oscillations in the shape of pulsating gas bubbles; experimental work. (Abstract). J. Acoust. Soc. Am. 30, 697.Google Scholar
Toba, Y. 1961 Drop production by bursting of air bubbles on the sea surface (III). Study by use of a wind flume.. Mem. Coll. Sci. Univ. Kyoto A 29, 313343.Google Scholar
Tsamopoulos, J. A. & Brown, R. A. 1983 Nonlinear oscillations of inviscid drops and bubbles. J. Fluid Mech. 127, 519537.Google Scholar