Article contents
Modelling of porous media by renormalization of the Stokes equations
Published online by Cambridge University Press: 20 April 2006
Abstract
The permeability of a random array of fixed spheres has been calculated over the range of volume fractions from dilute to almost closest packing, by assuming pairwise-additive (low-Reynolds-number) hydrodynamic interactions within an effective medium. Non-convergent pair interactions arising from the long-range decay of the Stokeslet were removed by renormalizing the Stokes equation to determine the permeability of the effective medium, i.e. to include the mean screening effect of the other spheres. Pair interactions in this Brinkman medium were calculated by the method of reflections in the far field and boundary collocation in the near field.
The permeability predicted by the theory asymptotes correctly to established results for dilute arrays, and compares favourably (within 15%) with the Carman correlation for volume fractions between 0.3 and 0.5. The magnitude also falls within the range of exact results for periodic arrays at the higher concentrations, but our model does not reproduce the dependence on structure.
Use of the Brinkman equation with an effective viscosity leads to an apparent slip velocity at the boundary of a porous medium. Our calculation of the bulk stress via volume averaging determines the effective viscosity and hence the slip coefficient unambiguously for dilute porous media. However, at concentrations corresponding to the available experimental results the lengthscale characterizing pressure or velocity gradients becomes comparable to the interparticle spacing, and the averaging technique fails. Indeed the Brinkman equation itself is no longer valid.
- Type
- Research Article
- Information
- Copyright
- © 1985 Cambridge University Press
References
- 158
- Cited by