Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-23T12:51:36.276Z Has data issue: false hasContentIssue false

Measurements of scalar power spectra in high Schmidt number turbulent jets

Published online by Cambridge University Press:  26 April 2006

Paul L. Miller
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125, USA Current address: Lawrence Livermore National Laboratory; PO Box 808, L-022; Livermore, CA 94551, USA
Paul E. Dimotakis
Affiliation:
Graduate Aeronautical Laboratories, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

We report on an experimental investigation of temporal, scalar power spectra of round, high Schmidt number (Sc ≃ 1.9 × 103), momentum-dominated turbulent jets, for jet Reynolds numbers in the range of 1.25 × 104Re ≤ 7.2 × 104. At intermediate scales, we find a spectrum with a slope (logarithmic derivative) that increases in absolute value with Reynolds number, but remains less than 5/3 at the highest Reynolds number in our experiments. At the smallest scales, our spectra exhibit no k−1 power-law behaviour, but, rather, seem to be approximated by a log-normal function, over a range of scales exceeding a factor of 40, in some cases.

Type
Research Article
Copyright
© 1996 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.Google Scholar
Batchelor, G. K., Howells, I. D. & Townsend, A. A. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 2. The case of large conductivity. J. Fluid Mech. 5, 134139.Google Scholar
Becker, H. A., Hottel, H. C. & Williams, G. C. 1967 The nozzle-fluid concentration field of the round turbulent, free jet. J. Fluid Mech. 30, 285303.Google Scholar
Blake, W. K. 1986 Mechanics of Flow-Induced Vibration, Vol. II. Academic.
Champagne, F. H., Friehe, C. A., La Rue, J. C. & Wyngaard, J. C. 1977 Flux measurements, flux estimation techniques and fine scale turbulent measurements in the surface layer over land. J. Atmos. Sci. 34, 515530.Google Scholar
Chapman, D. R. 1979 Computational aerodynamics development ond outlook. AIAA J. 17, 12931313.Google Scholar
Chen, C. J. & Rodi, W. 1980 Vertical Turbulent Buoyant Jets. A Review of Experimental Data. Pergamon.
Chevray, R. & Tutu, N. K. 1978 Conditional measurements in a heated turbulent jet. In Structure and Mechanics of Turbulence II (ed. H. Fiedler). Lecture Notes in Physics, vol. 76, pp. 7384. Springer.
Clay, J. P. 1973 Turbulent mixing of temperature in air, water, and mercury. PhD thesis, U. C. San Diego.
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in isotropic turbulence. J. Appl. Phys. 22, 469473.Google Scholar
Dimotakis, P. E. & Miller, P. L. 1990 Some consequences of the boundedness of scalar fluctuations. Phys. FluidsA 2 1919–1920.Google Scholar
Dowling, D. R. 1988 Mixing in gas phase turbulent jets. PhD thesis, California Institute of Technology.
Dowling, D. R. & Dimotakis, P. E. 1990 Similarity of the concentration field of gas-phase turbulent jets. J. Fluid Mech. 218, 109141.Google Scholar
Dowling, D. R., Lang, D. B. & Dimotakis, P. E. 1989 An improved laser-Rayleigh scattering photodetection system. Exps. Fluids 7, 435440.Google Scholar
Friehe, C. A., Atta, C. W. Van & Gibson, C. H. 1971 Jet turbulence: Dissipation rate measurements and correlations. AGARD Turbulent Shear Flows CP-93, 18.1–7.
Gargett, A. E. 1985 Evolution of scalar spectra with the decay of turbulence in a stratified fluid. J. Fluid Mech. 159, 379407.Google Scholar
Gibson, C. H. 1987 Fossil turbulence and intermittency in sampling oceanic mixing processes. J. Geophys. Res. 92, C5, 53835404.Google Scholar
Gibson, C. H. 1991 Kolmogorov similarity hypotheses for scalar fields: sampling intermittent turbulent mixing in ocean and galaxy. Proc. R. Soc. Lond. A 434, 149164.Google Scholar
Gibson, C. H. & Schwarz, W. H. 1963 The universal equilibrium spectra of turbulent velocity and scalar fields. J. Fluid Mech. 16, 365384.Google Scholar
Grant, H. L., Hughes, B. A., Vogel, W. M. & Moilliet, A. 1968 The spectrum of temperature fluctuations in turbulent flow. J. Fluid Mech. 34, 424442.Google Scholar
Kolmogorov, A. N. 1941 Local structure of turbulence in an incompressible viscous fluid at very high Reynolds numbers. Dokl. Akad. Nauk SSSR 30, 299.Google Scholar
Komori, S., Kanzaki, T., Murakami, Y. & Ueda, H. 1989 Simultaneous measurements of instantaneous concentrations of two species being mixed in a turbulent flow by using a combined laser-induced fluorescence and laser-scattering technique. Phys Fluids A 1, 349352.Google Scholar
Mestayer, P. 1982 Local isotropy and unisotropy in a high-Reynolds-number turbulent boundary layer. J. Fluid Mech. 125, 457503.Google Scholar
Miller, P. L. 1991 Mixing in high Schmidt number turbulent jets. PhD thesis, California Institute of Technology.
Miller, P. L. & Dimotakis, P. E. 1991a Stochastic geometric properties of scalar interfaces in turbulent jets. Phys Fluids A 3, 168177.Google Scholar
Miller, P. L. & Dimotakis, P. E. 1991b Reynolds number dependence of scalar fluctuations in a high Schmidt number turbulent jet. Phys. Fluids A 3, 11561163.Google Scholar
Monin, A. S. & Yaglom, A. M. 1975 Statistical Fluid Mechanics: Mechanics of Turbulence, vol. 2 (ed. J. Lumley). MIT Press.
Nye, J. O. & Brodkey, R. S. 1967 The scalar spectrum in the viscous-convective subrange. J. Fluid Mech. 29, 151163Google Scholar
Oboukov, A. M. 1962 Some specific features of atmospheric turbulence. J. Fluid Mech. 13, 7781.Google Scholar
Perry, A. E. & Abbell, C. J. 1975 Scaling laws for pipe-flow turbulence. J. Fluid Mech. 67, 257271.Google Scholar
Saddoughi, S. G. & Veeravalli, S. V. 1994 Local isotropy in turbulent boundary layers at high Reynolds number. J. Fluid Mech. 268, 333372.Google Scholar
Shaughnessy, E. J. & Morton, J. B. 1977 Laser light-scattering measurements of particle concentration in a turbulent jet. J. Fluid Mech. 80, 129148.Google Scholar
Ware, B. R., Cyr, D., Gorti, S. & Lanni, F. 1983 Electrophoretic and frictional properties of particles in complex media measured by laser light scattering and fluorescence photobleaching recovery. Measurement of Suspended Particles by Quasi-Elastic Light Scattering, pp. 255289. Wiley.
Williams, R. N. & Paulson, C. A. 1978 Microscale temperature and velocity spectra in the atmospheric boundary layer. J. Fluid Mech. 83, 547567.Google Scholar
Young, F. R. 1989 Cavitation. McGraw-Hill.