Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2025-01-04T03:44:19.323Z Has data issue: false hasContentIssue false

Measurement of the dispersion relation for random surface gravity waves

Published online by Cambridge University Press:  04 February 2015

Tore Magnus A. Taklo
Affiliation:
Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway
Karsten Trulsen*
Affiliation:
Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway
Odin Gramstad
Affiliation:
Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway Centre for Ocean Engineering Science and Technology, Swinburne University of Technology, Melbourne VIC 3122, Australia
Harald E. Krogstad
Affiliation:
Department of Mathematical Sciences, NTNU, NO-7491 Trondheim, Norway
Atle Jensen
Affiliation:
Department of Mathematics, University of Oslo, PO Box 1053 Blindern, NO-0316 Oslo, Norway
*
Email address for correspondence: [email protected]

Abstract

We report laboratory experiments and numerical simulations of the Zakharov equation, designed to have sufficient resolution in space and time to measure the dispersion relation for random surface gravity waves. The experiments and simulations are carried out for a JONSWAP spectrum and Gaussian spectra of various bandwidths on deep water. It is found that the measured dispersion relation deviates from the linear dispersion relation above the spectral peak when the bandwidth is sufficiently narrow.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrick, E. 1986 The role of the gravity-wave dispersion relation in HF radar measurements of the sea surface. IEEE J. Ocean. Engng 11, 286292.Google Scholar
Donelan, M. A., Hamilton, J. & Hui, W. H. 1985 Directional spectra of wind-generated waves. Phil. Trans. R. Soc. Lond. A 315, 509562.Google Scholar
Dysthe, K. B. 1979 Note on a modification to the nonlinear Schrödinger equation for application to deep water waves. Phil. Trans. R. Soc. Lond. A 369, 105114.Google Scholar
Goda, Y. 2000 Random Seas and Design of Maritime Structures. World Scientific.CrossRefGoogle Scholar
Gramstad, O. & Stiassnie, M. 2013 Phase-averaged equation for water waves. J. Fluid Mech. 718, 280303.CrossRefGoogle Scholar
Hara, T. & Karachintsev, A. V. 2003 Observation of nonlinear effects in ocean surface wave frequency spectra. J. Phys. Oceanogr. 33, 422430.Google Scholar
Hunt, J. N. 1952 Viscous damping waves over an inclined bed in a channel of finite width. La Houille Blanche 6, 836841.Google Scholar
Krasitskii, V. P. 1994 On reduced equations in the Hamiltonian theory of weakly nonlinear surface-waves. J. Fluid Mech. 272, 120.Google Scholar
Krogstad, H. E. & Trulsen, K. 2010 Interpretations and observations of ocean wave spectra. Ocean Dyn. 60, 973991.Google Scholar
Lake, B. M. & Yuen, H. C. 1978 A new model for nonlinear wind waves. Part 1. Physical model and experimental evidence. J. Fluid Mech. 88, 3362.Google Scholar
Lamb, H. 1932 Hydrodynamics, 6th edn. Dover.Google Scholar
Masuda, A., Kuo, Y. Y. & Mitsuyasu, H. 1979 On the dispersion relation of random gravity waves. Part 1. Theoretical framework. J. Fluid Mech. 92, 717730.Google Scholar
Mitsuyasu, H., Kuo, Y. Y. & Masuda, A. 1979 On the dispersion relation of random gravity waves. Part 2. An experiment. J. Fluid Mech. 92, 731749.Google Scholar
Phillips, O. M. 1960 On the dynamics of unsteady gravity waves of finite amplitude. Part 1. J. Fluid Mech. 9, 193217.Google Scholar
Phillips, O. M. 1961 On the dynamics of unsteady gravity waves of finite amplitude. Part 2. J. Fluid Mech. 11, 143155.Google Scholar
Phillips, O. M. 1981 The dispersion of short wavelets in the presence of a dominant long wave. J. Fluid Mech. 107, 456485.Google Scholar
Ramamonjiarisoa, A. & Coantic, M. 1976 Loi expérimental de dispersion des vagues produites par le vent sur une faible longueur d’action. C. R. Acad. Sci. Paris B 282, 111113.Google Scholar
Tick, L. J. 1959 A nonlinear random model of gravity waves. Part 1. J. Math. Mech. 8, 643651.Google Scholar
Trulsen, K., Stansberg, C. T. & Velarde, M. G. 1999 Laboratory evidence of three-dimensional frequency downshift of waves in a long tank. Phys. Fluids 11, 235237.CrossRefGoogle Scholar
Tucker, M. J. & Pitt, E. G. 2001 Waves in Ocean Engineering. Elsevier Science & Technology.Google Scholar
Van Dorn, W. G. 1966 Boundary dissipation of oscillatory waves. J. Fluid Mech. 24, 769779.CrossRefGoogle Scholar
Wang, D. W. & Hwang, P. A. 2004 The dispersion relation of short wind waves from space–time wave measurement. J. Atmos. Ocean. Technol. 21, 19361945.CrossRefGoogle Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. J. Appl. Mech. Tech. Phys. 9, 190194.Google Scholar