Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T09:02:43.271Z Has data issue: false hasContentIssue false

Mean velocity, spreading and entrainment characteristics of weak bubble plumes in unstratified and stationary water

Published online by Cambridge University Press:  03 July 2019

Binbin Wang*
Affiliation:
Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO 65211, USA
Chris C. K. Lai
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545, USA
Scott A. Socolofsky
Affiliation:
Zachry Department of Civil Engineering, Texas A&M University, College Station, TX 77843, USA
*
Email address for correspondence: [email protected]

Abstract

In this paper we present an experimental and theoretical study of weak bubble plumes in unstratified and stationary water. We define a weak bubble plume as one that spreads slower than the linear rate of a classic plume. This work focuses on the characteristics of the mean flow in the plume, including centreline velocity, plume spreading and entrainment of ambient water. A new theory based on diffusive spreading instead of an entrainment hypothesis is used to describe the lateral spreading of the bubbles and the associated plume. The new theory is supported by the experimental data. With the measured data of liquid volume fluxes and the new theory, we conclude that the weak bubble plume is a decreasing entrainment process, with the entrainment coefficient $\unicode[STIX]{x1D6FC}$ in the weak bubble plume decreasing with height $z$, following $\unicode[STIX]{x1D6FC}\sim z^{-1/2}$, and taking on values much smaller than those in a classic bubble plume. An additional non-dimensional diffusion coefficient, $\hat{E_{t}}\sim E_{t}U_{s}^{2}/B_{0}$, is also needed to describe the evolution of the volume and kinematic momentum fluxes for the mean flow in the weak bubble plume. Here, $E_{t}$ is the effective turbulent diffusion coefficient, $U_{s}$ is the terminal rise velocity of the bubbles, and $B_{0}$ is the kinematic buoyancy flux of the source. Finally, we provide a unified framework for the mean flow characteristics, including volume flux, momentum flux and plume spreading for the classic and weak bubble plumes, which also provides insight on the transition from classic to weak bubble plume behaviour.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asaeda, T. & Imberger, J. 1993 Structure of bubble plumes in linearly stratified environments. J. Fluid Mech. 249, 3557.Google Scholar
Bombardelli, F. A.2004 Turbulence in multi-phase models for aeration bubble plumes. PhD thesis, University of Illinois at Urbana-Champaign.Google Scholar
Bombardelli, F. A., Buscaglia, G. C., Rehmann, C. R., Rincon, L. E. & Garcia, M. H. 2007 Modeling and scaling of aeration bubble plumes: a two-phase flow analysis. J. Hydraul. Res. 45, 617630.Google Scholar
Brothers, L. L., Van Dover, C. L., German, C. R., Kaiser, C. L., Yoerger, D. R., Ruppel, C. D., Lobecker, E., Skarke, A. D. & Wagner, J. K. S. 2013 Evidence for extensive methane venting on the Southeastern US Atlantic margin. Geology 41 (7), 807810.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops, and Particles. Academic Press.Google Scholar
Crounse, B. C., Wannamaker, E. J. & Adams, E. E. 2007 Integral model of a multiphase plume in quiescent stratification. J. Hydraul. Engng ASCE 133 (1), 7076.Google Scholar
Dissanayake, A. L., Gros, J. & Socolofsky, S. A. 2018 Integral models for bubble, droplet, and multiphase plume dynamics in stratification and crossflow. Environ. Fluid Mech. 18 (5), 11671202.Google Scholar
Ditmars, J. D. & Cederwall, K. 1974 Analysis of air–bubble plumes. In Proc. Coastal Engng Conf., pp. 22092226.Google Scholar
Fannelop, T. K. & Sjoen, K. 1980 Hydrodynamics of underwater blowouts. In Proc. AIAA 18th Aerospace Sci. Meeting, Pasadena, CA.Google Scholar
Fisher, H. B., List, E. J., Koh, R. C. Y., Imberger, J. & Brooks, N. H. 1979 Mixing in Inland and Coastal Waters. Academic Press.Google Scholar
Garcia, C. M. & Garcia, M. H. 2006 Characterization of flow turbulence in large-scale bubble–plume experiments. Exp. Fluids 41 (1), 91101.Google Scholar
Holtappels, M. & Lorke, A. 2011 Estimating turbulent diffusion in a benthic boundary layer. Limnol. Oceanogr. 9, 2941.Google Scholar
Hugi, C.1993 Modelluntersuchungen von blasenstrahlen für die seebelüftung. PhD thesis, Inst. Hydromechanik u. Wasserwirtschaft, ETH, Zürich.Google Scholar
Johansen, O. 2000 Deepblow – a Lagrangian plume model for deep water blowouts. Spill Sci. Technol. Bull. 6 (2), 103111.Google Scholar
Johnson, H. P., Miller, U. K., Salmi, M. S. & Solomon, E. A. 2015 Analysis of bubble plume distributions to evaluate methane hydrate decomposition on the continental slope. Geochem. Geophys. Geosyst. 16 (11), 38253839.Google Scholar
Lai, A. C. H., Chan, S. N., Law, A. W. K. & Adams, E. E. 2016 Spreading hypothesis of a particle plume. J. Hydraul. Engng 142, 04016065.Google Scholar
Lee, J. H. W. & Chu, V. H. 2003 Turbulent Jets and Plumes – A Lagrangian Approach. Springer.Google Scholar
Leitch, A. M. & Baines, W. D. 1989 Liquid volume flux in a weak bubble plume. J. Fluid Mech. 205, 7798.Google Scholar
Lemckert, C. J. & Imberger, J. 1993 Energetic bubble plumes in arbitrary stratification. J. Hydraul. Engng ASCE 119, 680703.Google Scholar
Mcdougall, T. J. 1978 Bubble plumes in stratified environments. J. Fluid Mech. 85 (4), 655672.Google Scholar
McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E. & Wuest, A. 2006 Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J. Geophys. Res. Oceans 111, C09007.Google Scholar
Milgram, J. H. 1983 Mean flow in round bubble plumes. J. Fluid Mech. 133, 345376.Google Scholar
Milgram, J. H. & Van Houten, R. J. 1982 Plumes from sub-sea well blowouts. In Proc. of the 3rd Intl Conf. BOSS, vol. I, pp. 659684.Google Scholar
Morton, B. R., Taylor, G. I. & Turner, J. S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.Google Scholar
Romer, M., Sahling, H., Pape, T., Bohrmann, G. & Spiess, V. 2012 Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). J. Geophys. Res. Oceans 117, C10015.Google Scholar
Ruppel, C. D. & Kessler, J. D. 2017 The interaction of climate change and methane hydrates. Rev. Geophys. 55 (1), 126168.Google Scholar
Schladow, S. G. 1992 Bubble plume dynamics in a stratified medium and the implications for water-quality amelioration in lakes. Water Resour. Res. 28 (2), 313321.Google Scholar
Schladow, S. G. 1993 Lake destratification by bubble-plume systems – design methodology. J. Hydraul. Engng ASCE 119 (3), 350368.Google Scholar
Seol, D., Bhaumik, T., Bergmann, C. & Socolofsky, S. 2007 Particle image velocimetry measurements of the mean flow characteristics in a bubble plume. J. Engng Mech. ASCE 133, 665676.Google Scholar
Skarke, A., Ruppel, C., Kodis, M., Brothers, D. & Lobecker, E. 2014 Widespread methane leakage from the sea floor on the Northern US Atlantic margin. Nat. Geosci. 7 (9), 657661.Google Scholar
Socolofsky, S. A. & Adams, E. E. 2002 Multi-phase plumes in uniform and stratified crossflow. J. Hydraul. Res. 40, 661672.Google Scholar
Socolofsky, S. A. & Adams, E. E. 2003 Liquid volume fluxes in stratified multiphase plumes. J. Hydraul. Engng ASCE 129 (11), 905914.Google Scholar
Socolofsky, S. A. & Adams, E. E. 2005 Role of slip velocity in the behavior of stratified multiphase plumes. J. Hydraul. Engng ASCE 131 (4), 273282.Google Scholar
Socolofsky, S. A., Bhaumik, T. & Seol, D. G. 2008 Double-plume integral models for near-field mixing in multiphase plumes. J. Hydraul. Engng ASCE 134 (6), 772783.Google Scholar
Talukder, A. R., Ross, A., Crooke, E., Stalvies, C., Trefry, C., Qi, X. B., Fuentes, D., Armand, S. & Revill, A. 2013 Natural hydrocarbon seepage on the continental slope to the east of Mississippi canyon in the northern Gulf of Mexico. Geochem. Geophys. Geosyst. 14 (6), 19401956.Google Scholar
Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. 20, 196212.Google Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.Google Scholar
Turner, J. S. 1986 Turbulent entrainment – the development of the entrainment assumption, and its application to geophysical flows. J. Fluid Mech. 173, 431471.Google Scholar
Voulgaris, G. & Trowbridge, J. H. 1998 Evaluation of the acoustic Doppler velocimeter for turbulence measurements. J. Atmos. Ocean. Technol. 15, 272289.Google Scholar
Wang, B. & Socolofsky, S. A. 2015a A deep-sea, high-speed, stereoscopic imaging system for in situ measurement of natural seep bubble and droplet characteristics. Deep Sea Res. I 104, 134148.Google Scholar
Wang, B. & Socolofsky, S. A. 2015b On the bubble rise velocity of a continually released bubble chain in still water and with crossflow. Phys. Fluids 27, 103301.Google Scholar
Wang, B. & Socolofsky, S. A.2016 Stereoscopic camera images of low void fraction air bubble plume in stagnant water condition for experiments conducted in the Offshore Technology Research Center’s 17-meter wave basin at Texas A&M University, October 2016. Distributed by: Gulf of Mexico Research Initiative Information & Data Cooperative (GRIIDC), Harte Research Institute, Texas A&M University, Corpus Christi.Google Scholar
Wang, B., Socolofsky, S. A., Breier, J. A. & Seewald, J. S. 2016 Observation of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging. J. Geophys. Res. Ocean 121, 22032230.Google Scholar
Weber, T. C., Mayer, L., Jerram, K., Beaudoin, J., Rzhanov, Y. & Lovalvo, D. 2014 Acoustic estimates of methane gas flux from the seabed in a 6000 km2 region in the northern Gulf of Mexico. Geochem. Geophys. Geosyst. 15 (5), 19111925.Google Scholar
Westbrook, G. K., Thatcher, K. E., Rohling, E. J., Piotrowski, A. M., Palike, H., Osborne, A. H., Nisbet, E. G., Minshull, T. A., Lanoiselle, M., James, R. H. et al. 2009 Escape of methane gas from the seabed along the west Spitsbergen continental margin. Geophys. Res. Lett. 36, L15608.Google Scholar
Wuest, A., Brooks, N. H. & Imboden, D. M. 1992 Bubble plume modeling for lake restoration. Water Resour. Res. 28 (12), 32353250.Google Scholar
Yapa, P. D. & Zheng, L. 1997 Simulation of oil spills from underwater accidents I. Model development. J. Hydraul. Res. 35 (5), 673687.Google Scholar
Yapa, P. D., Zheng, L. & Nakata, K. 1999 Modeling underwater oil/gas jets and plumes. J. Hydraul. Engng ASCE 125 (5), 481491.Google Scholar
Zheng, L. & Yapa, P. D. 1998 Simulation of oil spills from underwater accidents II: Model verification. J. Hydraul. Res. 36 (1), 117134.Google Scholar