Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T23:54:22.881Z Has data issue: false hasContentIssue false

Mean flow deformation in a laminar separation bubble: separation and stability characteristics

Published online by Cambridge University Press:  17 August 2010

OLAF MARXEN*
Affiliation:
Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Paffenwaldring 21, 70550 Stuttgart, Germany Center for Turbulence Research, Stanford University, Stanford, CA 94305, USA
ULRICH RIST
Affiliation:
Institut für Aerodynamik und Gasdynamik, Universität Stuttgart, Paffenwaldring 21, 70550 Stuttgart, Germany
*
Email address for correspondence: [email protected]

Abstract

The mutual interaction of laminar–turbulent transition and mean flow evolution is studied in a pressure-induced laminar separation bubble on a flat plate. The flat-plate boundary layer is subjected to a sufficiently strong adverse pressure gradient that a separation bubble develops. Upstream of the bubble a small-amplitude disturbance is introduced which causes transition. Downstream of transition, the mean flow strongly changes and, due to viscous–inviscid interaction, the overall pressure distribution is changed as well. As a consequence, the mean flow also changes upstream of the transition location. The difference in the mean flow between the forced and the unforced flows is denoted the mean flow deformation. Two different effects are caused by the mean flow deformation in the upstream, laminar part: a reduction of the size of the separation region and a stabilization of the flow with respect to small, linear perturbations. By carrying out numerical simulations based on the original base flow and the time-averaged deformed base flow, we are able to distinguish between direct and indirect nonlinear effects. Direct effects are caused by the quadratic nonlinearity of the Navier–Stokes equations, are associated with the generation of higher harmonics and are predominantly local. In contrast, the stabilization of the flow is an indirect effect, because it is independent of the Reynolds stress terms in the laminar region and is solely governed by the non-local alteration of the mean flow via the pressure.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alam, M. & Sandham, N. D. 2000 Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 128.CrossRefGoogle Scholar
Bake, S., Meyer, D. G. W. & Rist, U. 2002 Turbulence mechanism in Klebanoff transition: a quantitative comparison of experiment and numerical simulation. J. Fluid Mech. 459, 217243.CrossRefGoogle Scholar
Bao, F. & Dallmann, U. 2004 Some physical aspects of separation bubble on a rounded backward-facing step. Aerosp. Sci. Technol. 8 (2), 8391.CrossRefGoogle Scholar
Bertero, M. & Boccacci, P. 1998 Introduction to Inverse Problems in Imaging. Institute of Physics Publishing.CrossRefGoogle Scholar
Bestek, H., Gruber, K. & Fasel, H. 1993 Direct numerical simulation of unsteady separated boundary-layer flows over smooth backward-facing steps. In Physics of Separated Flows – Numerical, Experimental and Theoretical Aspects (ed. Gersten, K.). Notes on Numerical Fluid Mechanics, vol. 40, pp. 7380. Vieweg.CrossRefGoogle Scholar
Boiko, A. V., Dovgal, A. V. & Hein, S. 2008 Control of a laminar separating boundary layer by induced stationary perturbations. Eur. J. Mech. B/Fluids 27 (4), 466476.CrossRefGoogle Scholar
Dovgal, A. V. & Boiko, A. V. 1994 Effect of harmonic excitation on instability of a laminar separation bubble on an airfoil. In Laminar–Turbulent Transition (ed. Fasel, H. & Saric, W.), pp. 675680. Springer.Google Scholar
Ehrenstein, U. & Gallaire, F. 2008 Two-dimensional global low-frequency oscillations in a separating boundary-layer flow. J. Fluid Mech. 614, 315327.CrossRefGoogle Scholar
Gaster, M. 1966 The structure and behaviour of laminar separation bubbles. AGARD CP–4, pp. 813854.Google Scholar
Hein, S. 1999 Linear and nonlinear non-local instability analyses for two-dimensional laminar separation bubbles. In Laminar–Turbulent Transition (ed. Fasel, H. F. & Saric, W. S.), pp. 681686. Springer.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jones, L. E., Sandberg, R. D. & Sandham, N. D. 2008 Direct numerical simulations of forced and unforced separation bubbles on an airfoil at incidence. J. Fluid Mech. 602, 175207.CrossRefGoogle Scholar
Kloker, M. 1993 Direkte numerische Simulation des laminar-turbulenten Strömungsumschlages in einer stark verzögerten Grenzschicht. Dissertation, Universität Stuttgart, Stuttgart, Germany.Google Scholar
Kloker, M. 1998 A robust high-resolution split-type compact FD scheme for spatial direct numerical simulation of boundary-layer transition. Appl. Sci. Res. 59, 353377.CrossRefGoogle Scholar
Lang, M. 2005 Experimentelle Untersuchungen zur Transition in einer laminaren Ablöseblase mit Hilfe der Laser-Doppler-Anemometrie und der Particle Image Velocimetry. Dissertation, Universität Stuttgart, Stuttgart, Germany.Google Scholar
Lang, M., Rist, U. & Wagner, S. 2004 Investigations on controlled transition development in a laminar separation bubble by means of LDA and PIV. Exp. Fluids 36, 4352.Google Scholar
Marquet, O., Sipp, D., Chomaz, J.-M. & Jacquin, L. 2008 Amplifier and resonator dynamics of a low-Reynolds-number recirculation bubble in a global framework. J. Fluid Mech. 605, 429443.CrossRefGoogle Scholar
Marxen, O. 2005 Numerical studies of physical effects related to the controlled transition process in laminar separation bubbles. Dissertation, Universität Stuttgart, Stuttgart, Germany.Google Scholar
Marxen, O. & Henningson, D. S. 2007 Direct numerical simulation of the bursting of a laminar separation bubble and evaluation of flow-control strategies. In IUTAM Symposium on Unsteady Separated Flows and Their Control’ June 18–22, Kerkyra (Corfu), Greece (ed. Braza, M. & Hourigan, K.). Springer.Google Scholar
Marxen, O., Kotapati, R. B. & You, D. 2006 Evaluation of active control of a laminar separation bubble based on linear stability theory. In Annual Research Briefs 2006, pp. 323335. Center for Turbulence Research, Stanford University.Google Scholar
Marxen, O., Lang, M., Rist, U., Levin, O. & Henningson, D. S. 2009 Mechanisms for spatial steady three-dimensional disturbance growth in a non-parallel and separating boundary layer. J. Fluid Mech. 634, 165189.CrossRefGoogle Scholar
Marxen, O., Lang, M., Rist, U. & Wagner, S. 2003 A combined experimental/numerical study of unsteady phenomena in a laminar separation bubble. Flow Turbulence Combust. 71, 133146.CrossRefGoogle Scholar
Maucher, U., Rist, U. & Wagner, S. 2000 Refined interaction method for direct numerical simulation of transition in separation bubbles. AIAA J. 38 (8), 13851393.CrossRefGoogle Scholar
Pauley, L. L., Moin, P. & Reynolds, W. C. 1990 The structure of two-dimensional separation. J. Fluid Mech. 220, 397411.CrossRefGoogle Scholar
Prandtl, L. 1904 Über Flüssigkeitsbewegung bei sehr kleiner Reibung. In Verhandlungen des dritten Internationalen Mathematiker-Kongresses in Heidelberg vom 8. bis 13. August 1904. (Proc. 3rd Intl Math. Congr., Heidelberg, Germany, August 8–13, 1904).Google Scholar
Rist, U. & Augustin, K. 2006 Control of laminar separation bubbles using instability waves. AIAA J. 44 (10), 22172223.CrossRefGoogle Scholar
Rist, U. & Maucher, U. 1994 Direct numerical simulation of two-dimensional and three-dimensional instability waves in a laminar separation bubble. In Proc. 74th Fluid Dynamics Symposium on Application of Direct and Large Eddy Simulation to Transition and Turbulence, AGARD CP–551, pp. 34.1–34.7. AGARDGoogle Scholar
Rist, U. & Maucher, U. 2002 Investigations of time-growing instabilities in laminar separation bubbles. Eur. J. Mech. B/Fluids 21, 495509.CrossRefGoogle Scholar
Rist, U., Maucher, U. & Wagner, S. 1996 Direct numerical simulation of some fundamental problems related to transition in laminar separation bubbles. In Computational Fluid Dynamics '96 (ed. Désidéri, J.-A., Hirsch, C., Tallec, P. L., Pandolfi, M. & Périaux, J.), pp. 319325. Wiley.Google Scholar
Sandham, N. D. 2008 Transitional separation bubbles and unsteady aspects of aerofoil stall. Aeronaut. J. 112 (1133), 395404.CrossRefGoogle Scholar
Schlichting, H. & Truckenbrodt, E. 2001 Aerodynamik des Flugzeuges, 3rd edn.Springer.Google Scholar
Sipp, D. & Lebedev, A. 2007 Global stability of base and mean flows: a general approach and its applications to cylinder and open cavity flows. J. Fluid Mech. 593, 333358.CrossRefGoogle Scholar
Smith, F. T. 1986 Steady and unsteady boundary layer separation. Annu. Rev. Fluid Mech. 18, 197220.CrossRefGoogle Scholar
Spalart, P. R. & Strelets, M. K. 2000 Mechanisms of transition and heat transfer in a separation bubble. J. Fluid Mech. 403, 329349.CrossRefGoogle Scholar
Sychev, V. V., Ruban, A. I., Sychev, V. V. & Korolev, G. L. 1998 Asymptotic Theory of Separated Flows, 1st edn.Cambridge University Press.CrossRefGoogle Scholar
Wassermann, P. & Kloker, M. 2003 Transition mechanisms induced by travelling crossflow vortices in a three-dimensional boundary layer. J. Fluid Mech. 483, 6789.CrossRefGoogle Scholar
Watmuff, J. H. 1999 Evolution of a wave packet into vortex loops in a laminar separation bubble. J. Fluid Mech. 397, 119169.CrossRefGoogle Scholar
Weldon, M., Peacock, T., Jacobs, G. B., Helu, M. & Haller, G. 2008 Experimental and numerical investigation of the kinematic theory of unsteady separation. J. Fluid Mech. 611, 111.CrossRefGoogle Scholar