Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T11:50:29.038Z Has data issue: false hasContentIssue false

Mean and turbulence characteristics of three-dimensional wall jets

Published online by Cambridge University Press:  29 March 2006

N. V. Chandrasekhara Swamy
Affiliation:
Fluid Mechanics Laboratory, Department of Applied Mechanics, Indian Institute of Technology, Madras 36
P. Bandyopadhyay
Affiliation:
Fluid Mechanics Laboratory, Department of Applied Mechanics, Indian Institute of Technology, Madras 36 Present address: Engineering Laboratory, University of Cambridge.

Abstract

This paper reports experimental investigations on the characteristic decay and the radial-type decay regions of a three-dimensional isothermal turbulent wall jet in quiescent surroundings. The velocity and the length scale behaviour for both the longitudinal and the transverse directions are studied, and compared with the results of other workers. The estimated skin friction is discussed in relation to the available data from earlier investigations. Wall jet expansion rates and the behaviour of skin friction are also discussed. The rate of approach of turbulence components to a self-similar form is found to be influenced by the fact that the expansion rate of the wall jet in the longitudinal direction is different from that in the transverse.

Type
Research Article
Copyright
© 1975 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bandyopadhyay, P. 1974 Some studies on a developing three-dimensional incompressible turbulent wall jet. Ph.D. thesis, I.I.T., Madras.
Bradshaw, P. & Gee, M. T. 1960 Aero. Res, Counc. R. & M. no. 3252.
Chandrasekhara Swamy, N. V. & Lakshmana gowda, N. H. 1974 Z. Flugwiss 22, 314.
Clauser, F. H. 1954 J. Aero. Sci. 21, 91.
Corrsin, S. 1943 N.A.C.A. Wartime Rep. W94.
Davies, P. O. A. L., Fisher, M. J. & Barratt, M. J. 1963 J. Fluid Mech. 15, 337.
Glauert, M. B. 1956 J. Fluid Mech. 1, 625.
Hanjali, K. & Launder, B. E. 1972 J. Fluid Mech. 52, 609.
Hinze, J. O. 1959 Turbulence. McGraw-Hill.
Irwin, H. P. A. H. 1973 J. Fluid Mech. 61, 33.
Klebanoff, P. S. 1954 N.A.C.A. Tech. Note, no. 3178.
Kruka, V. & Eskinazi, S. 1964 J. Fluid Mech. 20, 555.
Lawn, C. J. 1969 CEGB RD Rep. B/M 1277.
Mathieu, J. & Tailland, A. 1963 C. R. Acad. Sci. 256, 2768.
Newman, B. G., Patel, R. P., Savage, B. S. & Tjio, H. K. 1972 Aero. Quart. 23, 188.
Pai, B. R. & Whitelaw, J. H. 1969 Aero. Quart. 20, 355.
Patankar, V. P. & Sridhar, K. 1972 J. Basic Engng, 94, 339.
Patel, V. C. 1965 J. Fluid Mech. 23, 185.
Poreh, M., Tsuei, Y. G. & Cermak, J. E. 1967 J. Appl. Mech. 34, 459.
Schlichting, H. 1968 Boundary Layer Theory, 6th edn. McGraw-Hill.
Schwarz, W. H. & Cosart, W. P. 1961 J. Fluid Mech. 10, 481.
Sforza, P. M. & Herbst, G. 1970 A.I.A.A. J. 8, 276.
Shaw, R. 1960 J. Fluid Mech. 7, 550.
Sigalla, A. 1958 J. Roy. Aero. Soc. 62, 873.
Sridhar, K. & Tu, P. K. C. 1966 J. Roy. Aero. Soc. 70, 669.
Viets, H. & Sforza, P. M. 1966 Dept. Aero. Engng, App. Mech, Poly. Inst. Brooklyn Rep. PIBAL 968.
Wygnanski, I. & Fiedler, H. 1969 J. Fluid Mech. 38, 577.